The presence of poly(ethylene glycol) (PEG) at the surface of a liposomal carrier has been clearly shown to extend the circulation lifetime of the vehicle. To this point, the extended circulation lifetime that the polymer affords has been attributed to the reduction or prevention of protein adsorption. However, there is little evidence that the presence of PEG at the surface of a vehicle actually reduces total serum protein binding. In this review we examine all aspects of PEG in order to gain a better understanding of how the polymer fulfills its biological role. The physical and chemical properties of the polymer are explored and compared to properties of other hydrophilic polymers. An evidence based assessment of several in vitro protein binding studies as well as in vivo pharmacokinetics studies involving PEG is included. The ability of PEG to prevent the self-aggregation of liposomes is considered as a possible means by which it extends circulation longevity. Also, a "dysopsonization" phenomenon where PEG actually promotes binding of certain proteins that then mask the vehicle is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020186505848DOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
peg surface
8
circulation lifetime
8
protein binding
8
peg
6
controlling physical
4
physical behavior
4
behavior biological
4
biological performance
4
performance liposome
4

Similar Publications

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.

View Article and Find Full Text PDF

Production and Characterization of Oil-Loaded, Semi-Resorbable, Tri-Layered Hernia Mesh.

Polymers (Basel)

January 2025

Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.

Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.

View Article and Find Full Text PDF

This article presents the characteristics of composites comprising polylactide combined with iron powder, from 1 to 10 wt.%, and nanoiron powders with a mass fraction from 0.1 to 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!