The immunoprivileged environment of the testes was first described in the 1930s, and the Sertoli cell was later identified as the main cell type responsible for this phenomenon. Recent work has examined the possibility of recreating this immunoprivileged environment at heterotopic sites using isolated Sertoli cells. These studies have focused on protection of pancreatic islets and neuronal cells from immune destruction in the hopes of reversing type I diabetes and Parkinson's disease. The absence of a definitive marker for identifying Sertoli cells at the transplant site has been an obstacle to this research. The current study examines the presence of a nuclear transcription factor, Sox9, which is preferentially expressed in Sertoli cells. Syngeneic Lewis rat Sertoli cells were transplanted into the renal subcapsular space and a subcutaneous site in Lewis female rats and examined histologically 21 days later. In addition, porcine Sertoli cells were transplanted into the renal subcapsular space in female SCID mice. Control testes and the transplant sites were examined immunohistochemically using an antibody to Sox9. The results from the study demonstrate that Sox9 expression is restricted to the Sertoli cells of the neonatal rat and porcine testis, indicating high homology between species. In addition, Sox9 expression was also observed in the testicular-like tubules that formed in both syngeneic and xenogeneic heterotopic transplants in rats and SCID mice. The Sox9 expression was restricted to the regions where Sertoli cells would be found in the native testis. These results suggest that the Sox9 protein is a useful marker in identifying Sertoli cells in heterotopic transplants in a manner similar to insulin as a marker for pancreatic islets.
Download full-text PDF |
Source |
---|
J Clin Endocrinol Metab
January 2025
3Department of Metabolism, Digestion and Reproduction, Imperial College London.
Pubertal disorders in the form of delayed puberty (DP) or precocious puberty (PP) can cause considerable anxiety to both children and parents. Since the clinical and biochemical signatures of self-limiting and permanent conditions overlap considerably, it can be hard to determine whether to offer them reassurance or intervention. Researchers have thus long been searching for a robust test to indicate that the process of endogenous puberty is underway and is likely to proceed to completion.
View Article and Find Full Text PDFElife
January 2025
Biology of the Testis (BITE) Laboratory, Genetics, Reproduction and Development (GRAD) Research Group, Vrije Universiteit Brussel, Brussels, Belgium.
Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China.
Background/objectives: Climate change-induced temperature elevations pose significant challenges to livestock reproduction, particularly affecting testicular function in small ruminants. This study investigates the acute heat-stress response in goat Sertoli cells (SCs), aiming to elucidate the molecular mechanisms underlying heat-induced damage to male reproductive tissues.
Methods: SCs were isolated from testes of 4-month-old black goats and exposed to heat stress (44 °C for 2.
Genes (Basel)
November 2024
Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
: Oxidative stress in the testicles of male livestock can cause reduced fertility. Melatonin is a natural product with antioxidant effects, but its specific antioxidant mechanism is still unclear. This study used calf testicular Sertoli cells as materials to explore the mechanism by which melatonin alleviates the oxidative stress of Sertoli cells, laying a foundation for improving the fertility of bulls.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Chongqing Academy of Animal Science, Chongqing 402460, China.
Variations in disease resistance among pig breeds have been extensively documented, with Sertoli cells (SCs) playing a pivotal role in spermatogenesis. Infections can induce oxidative stress, which can lead to damage to these cells. This study aimed to compare the levels of oxidative stress in SCs from Rongchang and Landrace pig breeds following LPS challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!