Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots.

Plant Physiol

Abteilung Sekundärstoffwechsel, Leibniz-Institut für Pflanzenbiochemie, D-06120 Halle, Saale, Germany.

Published: November 2002

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166642PMC
http://dx.doi.org/10.1104/pp.006007DOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
rise jasmonates
8
expression genes
8
roots
5
induction jasmonate
4
jasmonate biosynthesis
4
biosynthesis arbuscular
4
mycorrhizal barley
4
barley roots
4
roots colonization
4

Similar Publications

Both, Serendipita indica and AMF, show promise as sustainable biofertilizers for reforestation, improving nutrient uptake and stress tolerance, despite contrasting effects on photosynthetic capacity and biomass allocation. Reclaiming degraded areas is essential for biodiversity conservation and enhancing ecosystem services enhancement, especially when using native species. This study investigated Schinus terebinthifolius Raddi, a native Brazilian species, and its compatibility with plant growth-promoting microorganisms (PGPM), including an endophytic fungus (Serendipita indica) and a consortium of arbuscular mycorrhizal fungi (AMF), to identify effective strategies for reforestation in nutrient-poor environments.

View Article and Find Full Text PDF

Arbuscular mycorrhizal Fungi (AMF) are essential in agriculture and are often inter-linked with glomalin-related soil protein (GRSP) production which supports binding of aggregates, enhanced SOC and biological attributes. However, conservation agricultural practices in agroecosystem may have significant impact on AMF diversity, GRSP and soil quality-related parameters (SQRPs). This current experiment was implemented to gauge AMF conization percentage (AMF-CP), GSRP and significant changes on critical SQRPs, and to investigate the linkages between AMF-CP, GRSP and SQRPs as influenced by synergistic tillage and weed management in CA.

View Article and Find Full Text PDF

Influence of Kunth Flavonoids on Composition of Soil Microbial Community.

Int J Mol Sci

December 2024

Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.

, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.

View Article and Find Full Text PDF

The Relative Contribution of Root Morphology and Arbuscular Mycorrhizal Fungal Colonization on Phosphorus Uptake in Rice/Soybean Intercropping Under Dry Cultivation.

Plants (Basel)

January 2025

Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.

View Article and Find Full Text PDF

Pulling nutrients from Mo-polluted soil by arbuscular mycorrhizal fungi extraradical mycelia is quenching thirsty with poison.

Plant Physiol Biochem

January 2025

College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.

As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!