A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. | LitMetric

The light state transition regulates the distribution of absorbed excitation energy between the two photosystems (PSs) of photosynthesis under varying environmental conditions and/or metabolic demands. In cyanobacteria, there is evidence for the redistribution of energy absorbed by both chlorophyll (Chl) and by phycobilin pigments, and proposed mechanisms differ in the relative involvement of the two pigment types. We assayed changes in the distribution of excitation energy with 77K fluorescence emission spectroscopy determined for excitation of Chl and phycobilin pigments, in both wild-type and state transition-impaired mutant strains of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. Action spectra for the redistribution of both Chl and phycobilin pigments were very similar in both wild-type cyanobacteria. Both state transition-impaired mutants showed no redistribution of phycobilin-absorbed excitation energy, but retained changes in Chl-absorbed excitation. Action spectra for the Chl-absorbed changes in excitation in the two mutants were similar to each other and to those observed in the two wild types. Our data show that the redistribution of excitation energy absorbed by Chl is independent of the redistribution of excitation energy absorbed by phycobilin pigments and that both changes are triggered by the same environmental light conditions. We present a model for the state transition in cyanobacteria based on the x-ray structures of PSII, PSI, and allophycocyanin consistent with these results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166641PMC
http://dx.doi.org/10.1104/pp.009845DOI Listing

Publication Analysis

Top Keywords

excitation energy
24
phycobilin pigments
16
state transition
12
energy absorbed
12
chl phycobilin
12
excitation
9
phycobilin-absorbed excitation
8
light state
8
pigments wild-type
8
state transition-impaired
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!