Objective: To investigate the underlying resistance mechanisms in 10 Klebsiella pneumoniae isolates.

Methods: Ten K. pneumoniae strains according to distinct bacteriocin typing and REP-PCR, were examined for their plasmid content, their ability to transfer their resistance to aminoglycosides and third-generation cephalosporins, and their production of aminoglycoside-modifying enzymes and beta-lactamases.

Results: Transfer of resistance to the above-mentioned antibiotics as well as to co-trimoxazole and tetracycline in Escherichia coli strain RC 85 at a frequency of 5-106 was achieved for all strains by conjugation. Similar strains harbor a self-transferable multiresistant plasmid (80 kb) with similar EcoRI and HindIII restriction patterns. This plasmid encodes an extended-spectrum beta-lactamase which confers high-level resistance to third-generation cephalosporins and aztreonam. It produces SHV-5 beta-lactamase, as demonstrated by isoelectric focusing and DNA sequencing. Aminoglycoside resistance was co-transferred, and AAC(6')-I, mediating resistance to gentamicin, tobramycin, netilmicin and amikacin, and AAC(3)-I, mediating resistance to gentamicin and sisomycin, were encoded in all isolates and their transconjugants, while APH(3')-I, mediating resistance to kanamycin and neomycin, was encoded in seven strains.

Conclusions: It appears that a multiresistant transferable plasmid encoding the SHV-5 beta-lactamase, causing unusually high resistance to ceftazidime and aztreonam, and the combination AAC(6')-I + AAC(3)-I of acetylating enzymes causing, also resistance to all clinically available aminoglycosides, is established in K. pneumoniae in Greece.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1469-0691.2002.00391.xDOI Listing

Publication Analysis

Top Keywords

mediating resistance
16
resistance
11
transferable plasmid
8
klebsiella pneumoniae
8
transfer resistance
8
third-generation cephalosporins
8
shv-5 beta-lactamase
8
resistance gentamicin
8
mediating
4
plasmid mediating
4

Similar Publications

Pro-Arg, The Potential Anti-Diabetes Peptide, Screened from Almond by In-Silico Analysis.

Plant Foods Hum Nutr

January 2025

College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.

Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton.

Mol Plant Pathol

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.

View Article and Find Full Text PDF

KEAP1 mutations as key crucial prognostic biomarkers for resistance to KRAS-G12C inhibitors.

J Transl Med

January 2025

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.

Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.

View Article and Find Full Text PDF

Bacterial indole-3-propionic acid inhibits macrophage IL-1β production through targeting methionine metabolism.

Sci China Life Sci

January 2025

State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.

The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!