The efficacy of live reovirus vaccines may be determined by challenge via the foot pad route 3 to 4 weeks after vaccination. Swelling and discoloration in the foot pad and shank are scored for a period of 14 days. The major disadvantages of this challenge model are the subjective judgement of gross foot pad and/or shank lesions, that it is very difficult to induce lesions in broilers, and that it causes animal suffering. Other reovirus challenge models are based on reisolation of the virus from different tissues or on scoring microscopic lesions in the tendons. Some disadvantages of these models are that they either cannot be used after vaccination with live reovirus because they cannot discriminate between vaccine and challenge virus or that the microscopic lesions scored need not necessarily be related to the challenge virus but may have been induced by other factors. Therefore, we have attempted to develop a reovirus challenge model that was an improvement on the existing ones, using isolation of reovirus from different organs followed by specific detection of the challenge virus with a monoclonal antibody that can discriminate between challenge and vaccine virus. The reovirus challenge model was examined in specific pathogen free (SPF) White Leghorn chickens and commercial broilers. In vivo studies were conducted to examine the efficacy of an attenuated reovirus vaccine in SPF White Leghorn chickens and commercial broilers with maternal immunity against reovirus. No challenge virus could be detected in any of the organs of the vaccinated chickens 3 and 10 days after challenge. In contrast, challenge virus could be isolated from the unvaccinated control group. At an increased challenge dose all unvaccinated challenge control birds were positive, while the vaccinated chickens were protected. It was shown that 1-day-old vaccination in the presence of maternal immunity was effective. It seemed that protection induced in broilers by the attenuated reovirus vaccine may not have been entirely humoral because in protected birds no antibodies against reovirus were detected by enzyme-linked immunosorbent at the time of challenge. Protection in these birds might therefore have been induced by cellular immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03079450120106589 | DOI Listing |
Viruses
December 2024
School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia.
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.
View Article and Find Full Text PDFAvian Pathol
January 2025
Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.
infections can be experimentally reproduced after oral inoculation. Co-infections of with other avian pathogens might increase the proportion of broilers with infections. The aim of the study was to examine via which infection route is capable of causing infections and which co-infections exacerbate infections.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, PR China.
Broadly neutralizing antibodies (bNAbs) could offer escape-tolerant and lasting protection against viral infections and therefore guide development of broad-spectrum vaccines. The increasing challenge posed by viral evolution and immune evasion intensifies the importance of the discovery of bNAbs and their underlying neutralization mechanism. Here, focusing on the pivotal viral protein VP4 of rotavirus (RV), we identify a potent bNAb, 7H13, exhibiting broad-spectrum neutralization across diverse RV genotypes and demonstrating strong prevention of virus infection in female mice.
View Article and Find Full Text PDFViruses
November 2024
The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia.
A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.
View Article and Find Full Text PDFMicroorganisms
November 2024
Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China.
Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!