The chain stiffness of macromolecules is considered critical in their design and applications. This study utilizes polyguluronate derived from alginate, a typical polysaccharide widely utilized in many biomedical applications, as a model macromolecule to investigate how the chain stiffness can be tightly regulated by partial oxidation. Alginate has a backbone of inherently rigid alpha-L-guluronate (i.e., polyguluronate) and more flexible beta-D-mannuronate. The chain stiffness of the polyguluronate was specifically studied in this paper, as this component plays a critical role in the formation of alginate hydrogels with divalent cations and is the dominant factor in determining the chain stiffness of alginate. We have utilized size-exclusion chromatography, equipped with refractive index, viscosity, and light-scattering detectors, to determine the intrinsic viscosity and the weight-average molecular weight of each fraction of samples. The chain stiffness of partially oxidized polyguluronate was then evaluated from the exponent of the Mark-Houwink equation and the persistence length. We have found that partial oxidation can be used to tightly regulate the steric hindrance and stiffness of the polyguluronate backbone. This approach to control the chain stiffness of inherently rigid polysaccharides by partial oxidation may find many applications in biomedical utilization of these materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm025567h | DOI Listing |
Inflammopharmacology
January 2025
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Shandong Trauma Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250014, People's Republic of China.
Background: Posttraumatic elbow stiffness is a complex complication with two characteristics of capsular contracture and heterotopic ossification. Currently, genomic mechanisms and pathogenesis of posttraumatic elbow stiffness remain inadequately understood. This study aims to identify differentially expressed genes (DEGs) and elucidate molecular networks of posttraumatic elbow stiffness, providing novel insights into disease mechanisms at transcriptome level.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, India.
Self-assembly of nanoparticles (NPs) in solution has garnered tremendous attention among researchers because of their electrical, chemical, and optoelectronic properties at the macroscale with potential applications in bio-imaging, bio-medicine, and therapeutics. Control of size, shape, and composition at the nanoscale is important in tuning the material's bulk properties. The grafting of NPs with polymers enables us to tune such bulk material properties at the nano level by controlling their assemblies, especially in solutions.
View Article and Find Full Text PDFNutrients
December 2024
Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 37005 Salamanca, Spain.
Background: Recent research highlights the potential role of sex-specific variations in cardiovascular disease. The gut microbiome has been shown to differ between the sexes in patients with cardiovascular risk factors.
Objectives: The main objective of this study is to analyze the differences between women and men in the relationship between gut microbiota and measures of arterial stiffness.
J Phys Chem B
January 2025
INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!