AI Article Synopsis

Article Abstract

The compounds RE4FeGa(12-x)Ge(x) (RE = Sm, Tb) were discovered in reactions employing molten Ga as a solvent at 850 degrees C. However, the isostructural Y4FeGa(12-x)Ge(x) was prepared from a direct combination reaction. The crystal structure is cubic with space group Imm, Z = 2, and a = 8.657(4) A and 8.5620(9) A for the Sm and Tb analogues, respectively. Structure refinement based on full-matrix least squares on F(o)2 resulted in R1 = 1.47% and wR2 = 4.13% [I > 2(I)] for RE = Sm and R1 = 2.29% and wR2 = 7.12% [I > 2(I)] for RE = Tb. The compounds crystallize in the U4Re7Si6 structure type, where the RE atoms are located on 8c (1/4, 1/4, 1/4) sites and the Fe atoms on 2a (0, 0, 0) sites. The distribution of Ga and Ge in the structure, investigated with single-crystal neutron diffraction on the Tb analogue, revealed that these atoms are disordered over the 12d (1/4, 0, 1/2) and 12e (x, 0, 0) sites. The amount of Ga/Ge occupying the 12d and 12e sites refined to 89(4)/11 and 70(4)/30%, respectively. Transport property measurements indicate that these compounds are metallic conductors. Magnetic susceptibility measurements and Mössbauer spectroscopy performed on the Tb analogue show a nonmagnetic state for Fe, while the Tb atoms carry a magnetic moment corresponding to a mu(eff) of 9.25 mu(B).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic025544bDOI Listing

Publication Analysis

Top Keywords

single-crystal neutron
8
neutron diffraction
8
1/4 1/4
8
12e sites
8
isolation cubic
4
cubic phases
4
phases re4fega12-xgex
4
re4fega12-xgex molten
4
molten gallium
4
gallium single-crystal
4

Similar Publications

A series of compositions NiInSn ( = 0-1) were synthesized by conventional high-temperature synthesis, and as-synthesized samples were checked by powder X-ray diffraction experiments. NiInSn ( < 0.7) mainly forms the ternary variant of the CoSn-type structure (6/), whereas, = 0.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF

Ferrotoroidicity in CsFeCl·DO.

Sci Rep

December 2024

Institut Laue-Langevin, 71, av des Martyrs CS 20156, Grenoble, 38042, France.

The promise of antiferromagnetic spintronics largely relies on the possibilities of electrical manipulation of antiferromagnetic states, which requires the exploration of innovative material platforms to meet the challenge. Erythrosiderite-type compounds constitute a class of non-oxide materials presenting magneto-electric couplings ranging from multiferroicity to linear magneto-electric behaviour. In this communication, we demonstrate that Cs[FeCl(DO)] shows evidence of another ferroic order, ferrotoroidicity, providing an alternative way of manipulating the magnetic states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!