A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. | LitMetric

Purpose: The purpose of this study was to demonstrate and characterize phagocytosis of poly(D,L-lactic-co-glycolic acid) (PLGA) nanospheres by human dendritic cells (DCs).

Methods: Parallel cultures of DCs and macrophages (Mphi) were established from peripheral blood leukocytes using media supplemented with granulocyte-macrophage colony stimulator factor and interleukin-4 (for DC) or granulocyte-macrophage colony stimulator factor alone (for Mphi). PLGA nanospheres containing tetramethylrhodamine-labeled dextran with or without an adjuvant, monophosphoryl lipid A, were prepared using a water/oil/water solvent evaporation technique. Cells were incubated with the nanospheres for 24 h. Confocal laser scanning microscopy was used to determine the intracellular location of the nanospheres and flow cytometry to measure the fraction of phagocytic cells in the culture and the amount of uptake per cell. After phagocytosis, cells were stained for MHC class II molecules, CD14, CD80, and CD86 to identify the phagocytic population.

Results: DCs phagocytosed PLGA nanospheres as efficiently as Mphi. Cell-surface marker expression conclusively established that the phagocytic cells were DC.

Conclusions: DCs can take up PLGA nanospheres. Because DCs are the key professional antigen-presenting cells capable of stimulating naive T cells, our data suggest that PLGA nanospheres can be used as an efficient delivery system for vaccines designed to activate T cell-mediated immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020452531828DOI Listing

Publication Analysis

Top Keywords

plga nanospheres
20
polydl-lactic-co-glycolic acid
8
human dendritic
8
cells
8
dendritic cells
8
granulocyte-macrophage colony
8
colony stimulator
8
stimulator factor
8
phagocytic cells
8
nanospheres
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!