Prednisone induces cognitive dysfunction, neuronal degeneration, and reactive gliosis in rats.

J Investig Med

Department of Rheumatology, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, México.

Published: November 2002

Background: High glucocorticoid serum levels and prednisone (PDN) therapy have been associated with depression, posttraumatic stress disorder, and some types of cognitive dysfunction in humans.

Objective: The aim of this study was to assess whether chronic (90 days) PDN administration produces disturbance in learning and memory retention associated with neuronal degeneration and cerebral glial changes.

Methods: Male Wistar rats were studied. Controls received 0.1 ml distilled water vehicle orally. The PDN group was treated orally with 5 mg/kg/d PDN, which is equivalent to moderate doses used in clinical settings. Learning and memory retention were assessed with the Morris water maze. The index of degenerated neurons as well as the number and cytoplasmic transformation of astrocytes and microglia cells were evaluated in the prefrontal cortex and the CA1 hippocampus.

Results: PDN-treated rats showed a significant delay of 20% in learning and memory retention as compared with controls. In addition, in the PDN group, the neuronal degeneration index was two times higher in the prefrontal cortex, and approximately 10 times higher in the CA1 hippocampus, than in control animals. The number and cytoplasmic transformation of astrocytes were also significantly higher in the PDN group than in control animals. In the PDN-treated group, isolectin-B4-labeled microglia cells were higher in the prefrontal cortex but not in the hippocampus.

Conclusion: These results suggest that chronic exposure to PDN produces learning and memory impairment, reduces neural viability, and increases glial reactivity in cerebral regions with these cognitive functions.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jim-50-06-06DOI Listing

Publication Analysis

Top Keywords

learning memory
16
neuronal degeneration
12
memory retention
12
pdn group
12
prefrontal cortex
12
cognitive dysfunction
8
number cytoplasmic
8
cytoplasmic transformation
8
transformation astrocytes
8
microglia cells
8

Similar Publications

Background: Cognitive deterioration is common in multiple sclerosis (MS) and requires regular follow-up. Currently, cognitive status is measured in clinical practice using paper-and-pencil tests, which are both time-consuming and costly. Remote monitoring of cognitive status could offer a solution because previous studies on telemedicine tools have proved its feasibility and acceptance among people with MS.

View Article and Find Full Text PDF

This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.

View Article and Find Full Text PDF

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance.

View Article and Find Full Text PDF

Edaravone Mitigates Hippocampal Neuronal Death and Cognitive Dysfunction by Upregulating BDNF Expression in Neonatal Hypoxic-Ischemic Rats.

Int J Dev Neurosci

February 2025

Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!