The capture efficiency map: the capture zone under time-varying flow.

Ground Water

Trojan Technologies Inc., Tucson, AZ 85704, USA.

Published: February 2003

The capture zone or contributing area of a ground water extraction well can be defined as that portion of the aquifer from which the well draws its water. Accurate delineation of capture zones is important in many ground water remediation applications and in the definition of wellhead protection areas. Their mathematical delineation is often simplified by using quasi-steady-state models based on time-weighted average pumping rates and background hydraulic gradients. We present a new semianalytic approach for the definition of capture zones under transient-flow conditions. We then use this approach to evaluate the effects of time variations in the direction of the background hydraulic gradient on capture. Results are presented in the form of capture efficiency maps (CEMs). Although the area contributing to a given well is found to generally expand relative to the steady-state average capture zone when the gradient direction varies, the zone of 100% capture may expand or contract depending on site-specific conditions. We illustrate our CEM approach by applying it to the design of a plume containment system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2002.tb02548.xDOI Listing

Publication Analysis

Top Keywords

capture zone
12
capture
9
capture efficiency
8
ground water
8
capture zones
8
background hydraulic
8
efficiency map
4
map capture
4
zone
4
zone time-varying
4

Similar Publications

Shaping Ability of XP-Endo Shaper Files with Extended Use Time and Reciproc Blue 40.06 in Oval Canals: A Micro-Computed Tomography Study in Contralateral Premolars.

J Endod

January 2025

Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Área de Endodontia, Campinas, São Paulo, Brasil.

Introduction: This study evaluated the shaping ability of the single-file XP-endo Shaper (XP-S) system, employing an extended working time, and the Reciproc Blue #40/.06 (REC) instrument during the preparation of oval-shaped canals.

Methods: Eleven pairs of contralateral premolars with a single canal were divided into two groups (n = 11) according to the canal preparation protocol: XP-S (with an additional 45 seconds of instrumentation) and REC.

View Article and Find Full Text PDF

BMA-Net: A 3D bidirectional multi-scale feature aggregation network for prostate region segmentation.

Comput Methods Programs Biomed

January 2025

Guizhou Province International Science and Technology Cooperation Base for Precision Imaging Diagnosis and Treatment, Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Department of Radiology, Guizhou Provincial People's Hospital, Guizhou 550002, China. Electronic address:

Background And Objective: Accurate segmentation of the prostate region in magnetic resonance imaging (MRI) is crucial for prostate-related diagnoses. Recent studies have incorporated Transformers into prostate region segmentation to better capture long-range global feature representations. However, due to the computational complexity of Transformers, these studies have been limited to processing single slices.

View Article and Find Full Text PDF

Importance: Lung ultrasound (LUS) aids in the diagnosis of patients with dyspnea, including those with cardiogenic pulmonary edema, but requires technical proficiency for image acquisition. Previous research has demonstrated the effectiveness of artificial intelligence (AI) in guiding novice users to acquire high-quality cardiac ultrasound images, suggesting its potential for broader use in LUS.

Objective: To evaluate the ability of AI to guide acquisition of diagnostic-quality LUS images by trained health care professionals (THCPs).

View Article and Find Full Text PDF

Understanding non-reducible N in the mechanism of Mo-nitrogenase.

Dalton Trans

January 2025

School of Chemistry, UNSW Sydney, NSW 2052, Australia.

In my proposed mechanism of Mo-nitrogenase there are two roles for separate N molecules. One N diffuses into the reaction zone between Fe2 and Fe6 where a strategic gallery of H atoms can capture N to form the Fe-bound HNNH intermediate which is then progressively hydrogenated through intermediates containing HNNH, NH and NH entities and then two NH in sequence. The second N can be parked in an N-pocket about 3.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!