Clustering of macrophage Fc gamma receptors by multimeric immunoglobulin complexes leads to their internalization. Formation of small aggregates leads to endocytosis, whereas large particulate complexes induce phagocytosis. In RAW-264.7 macrophages, Fc gamma receptor endocytosis was found to be dependent on clathrin and dynamin and insensitive to cytochalasin. Clathrin also associates with nascent phagosomes, and earlier observations suggested that it plays an essential role in phagosome formation. However, we find that phagocytosis of IgG-coated large (> or =3 microm) particles was unaffected by inhibition of dynamin or by reducing the expression of clathrin using antisense mRNA but was eliminated by cytochalasin, implying a distinct mechanism dependent on actin assembly. The uptake of smaller particles (< or =1 microm) was only partially blocked by cytochalasin. Remarkably, the cytochalasin-resistant component was also insensitive to dominant-negative dynamin I and to clathrin antisense mRNA, implying the existence of a third internalization mechanism, independent of actin, dynamin, and clathrin. The uptake of small particles occurred by a process distinct from fluid phase pinocytosis, because it was not inhibited by dominant-negative Rab5. The insensitivity of phagocytosis to dominant-negative dynamin I enabled us to test the role of dynamin in phagosomal maturation. Although internalization of receptors from the plasma membrane was virtually eliminated by the K44A and S45N mutants of dynamin I, clearance of transferrin receptors and of CD18 from maturing phagosomes was unaffected by these mutants. This implies that removal of receptors from the phagosomal membrane occurs by a mechanism that is different from the one mediating internalization of the same receptors at the plasma membrane. These results imply that, contrary to prevailing notions, normal dynamin and clathrin function is not required for phagocytosis and reveal the existence of a component of phagocytosis that is independent of actin and Rab5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207966200 | DOI Listing |
Pflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFBiochemistry
January 2025
Sunita Sanghi Centre of Aging and Neurodegenerative Diseases (SCAN), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Aggregation of α-synuclein (α-Syn) and Lewy body (LB) formation are the key pathological events implicated in Parkinson's disease (PD) that spread in a prion-like manner. However, biophysical and structural characteristics of toxic α-Syn species and molecular events that drive early events in the propagation of α-Syn amyloids in a prion-like manner remain elusive. We used a neuronal cell model to demonstrate the size-dependent native biological activities of α-Syn fibril seeds.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA.
Introduction: Alzheimer's disease (AD) and other tauopathies are characterized by intracellular aggregates of microtubule-associated protein tau that are actively released and promote proteopathic spread. Microglia engulf pathological proteins, but how they endocytose tau is unknown.
Methods: We measured endocytosis of different tau species by microglia after pharmacological modulation of macropinocytosis or clathrin-mediated endocytosis (CME) or antagonism/genetic depletion of known tau receptors heparan-sulfate proteoglycans (HSPGs) and low-density lipoprotein receptor-related protein 1 (LRP1).
Nanomedicine (Lond)
January 2025
Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Ipoh, Malaysia.
Introduction: Inhalation drug delivery can deliver high doses of chemotherapeutic drugs to the lung tumor. This study evaluates the efficacy and the mechanistic pathways of nebulized Cur NPs at various sizes to treat multidrug resistant lung cancer.
Methods And Results: Cur-NPs (30 nm and 200 nm) were nebulized separately onto the multidrug-resistant lung cancer cells (H69AR).
Cell Rep
December 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
During clathrin-mediated endocytosis (CME), dozens of proteins are recruited to nascent CME sites on the plasma membrane, and their spatial and temporal coordination is crucial for efficient CME. Here, we show that the scaffold protein intersectin1 (ITSN1) promotes CME by organizing and stabilizing endocytic protein interaction networks. Live-cell imaging of genome-edited cells revealed that endogenously labeled ITSN1 is recruited during CME site stabilization and growth and that ITSN1 knockdown impairs endocytic protein recruitment during this stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!