6-Hydroxymellein (6HM) synthase is a multifunctional polyketide enzyme induced in carrot cells, whose fully active homodimer catalyzes condensation of acyl-CoAs and the NADPH-dependent ketoreduction of the enzyme-bound intermediate. 6HM-forming activity of the synthase was markedly decreased when the reaction mixture pH was adjusted from 7.5 to 6.0. However, under these slightly acidic conditions, the acyl condensation catalyzed by the dissociated monomer enzyme was appreciably stimulated by addition of free coenzyme A (CoA). In contrast, the condensation reaction at pH 6.0 was significantly inhibited in the presence of CoA when the reaction was carried out with the NADPH-omitted dimer synthase. Among the kinetic parameters of the acyl condensation, velocity of the monomer-catalyzing reaction at the acidic pH was appreciably increased upon addition of CoA while K(m)s did not show any significant change in the presence and absence of the compound. These results suggest that CoA associates with a specific site in the dissociated monomeric form of 6HM synthase, and the velocity of the acyl condensation reaction catalyzed by the CoA-synthase complex appreciably increases in acidic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0031-9422(02)00377-1DOI Listing

Publication Analysis

Top Keywords

acyl condensation
16
condensation reaction
12
synthase multifunctional
8
multifunctional polyketide
8
free coenzyme
8
6hm synthase
8
acidic conditions
8
condensation
6
reaction
6
synthase
5

Similar Publications

Facile Synthesis of Acyl-Hydrazone Composites Based on Hydrazide-Modified Formylated Polystyrene for Effective Removal of Heavy Metal Ions and Sulfides from Water.

ACS Appl Mater Interfaces

December 2024

Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.

In this study, waste polystyrene was modified and upgraded to prepare formylated polystyrene, and the modified polystyrene acetyl hydrazone (LT-HPA) was synthesized by condensation with polymethyl-propionyl-hydrazine. It is proven that the modification of the adsorption material is successful by various characterization methods. In the subsequent pollutant removal study, pH, mass, concentration, contact time, and salt ion interference were investigated.

View Article and Find Full Text PDF

Introduction: Many beneficial compounds found in fig leaves can be used in tea and medicine. These compounds aid with digestion, reduce inflammation, and treat diabetes and bronchitis. Chetoui, Malha, Ghoudane, and Onk Hmam fig leaf hydro-ethanol extracts from Eastern Morocco were analyzed for metabolites and biological activities.

View Article and Find Full Text PDF

In silico characterization of Rhodotorula toruloides ELO-like elongases and production of very-long-chain fatty acids by expressing Rtelo2, RtKCR, RtHCD, and RtECR through IRES-mediated bicistrons.

World J Microbiol Biotechnol

November 2024

Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.

Rhodotorula toruloides, an oleaginous yeast known for its high lipid productivity, produces lipids with low very-long-chain fatty acid (VLCFA) content. Meanwhile, the roles of enzymes, particularly the condensing enzymes, involved in VLCFA biosynthesis in R. toruloides remained unclear.

View Article and Find Full Text PDF

contain numerous bioactive compounds that provide several advantages, including antioxidant, antibacterial, anticancer, neuroprotective, anti-inflammatory, and antidiabetic characteristics. This study aimed to make a hydroethanolic extract from the aerial part of the plant, analyze its biochemical compounds, and test its biological activities. From HPLC-DAD analysis, cinnamic acid, sinapic acid, and vanillin bioactives were found to be the main compounds in the extract.

View Article and Find Full Text PDF

In nature, thousands of diverse and bioactive polyketides are assembled by a family of multifunctional, "assembly line" enzyme complexes called polyketide synthases (PKS). Since the late 20th century, there have been several attempts to decode, rearrange, and "reprogram" the PKS assembly line to generate valuable materials such as biofuels and platform chemicals. Here, the first module from () PKS12, an unorthodox, "modularly iterative" PKS, was modified and repurposed toward the formation of 2-methyl Guerbet lipids, which have wide applications in industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!