There exists ample evidence for the assumption that pore-forming colicins cannot exert their toxicity within the producing cell and that they must gain access to the outer face of the cytoplasmic membrane to achieve this. We wished to construct pET-vectors to produce pore-forming domains of colicin A and N with N-terminal hexa-histidine tags under the control of a T7 promoter. This was only possible when the correct immunity protein was also present. Hence it appears that this system exhibits the peculiarity that there is a toxicity associated with the over produced pore-forming domain. However, when the ratio of colicin to immunity protein is compared it is still clear that direct insertion into the cytoplasmic membrane does not occur and that membrane translocation of the colicin at limited sites may be occurring. This article reviews previous literature on the subject in terms of a model for limited sites of colicin action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9084(02)01418-9DOI Listing

Publication Analysis

Top Keywords

pore-forming domains
8
cytoplasmic membrane
8
immunity protein
8
limited sites
8
colicin
5
high level
4
level expression
4
expression his-tagged
4
his-tagged colicin
4
pore-forming
4

Similar Publications

Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.

View Article and Find Full Text PDF

Genomic analysis of isolated from surface water and animal sources in Chile reveals new T6SS effector protein candidates.

Front Microbiol

December 2024

Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.

Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in genomes deposited in public databases.

View Article and Find Full Text PDF

Unlabelled: Pyroptosis is an inflammatory immune response of eukaryotic cells to bacterial lipopolysaccharide (LPS) and other pathological stimuli, leading to the activation of the gasdermin D (GSDMD) and secretion of pore-forming domain GSDMD, facilitating the release of cytokines. Additionally, GSDMD exhibits antibacterial properties through interactions with bacterial outer membranes (OM). We explored alternative antimicrobial strategy to determine whether inducing natural pyroptosis via GSDMD activation by LPS could enhance the effectiveness of recombinant phage endopeptidase KP27 (peptidoglycan-degrading enzyme) against , enabling penetration through OM and bacterial killing synergistically.

View Article and Find Full Text PDF

Human TMC1 and TMC2 are mechanically gated ion channels.

Neuron

December 2024

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China. Electronic address:

Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.

View Article and Find Full Text PDF

Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!