We coupled ligation with mass action to achieve high-efficiency clamp attachment without polymerase chain reaction (PCR). Using a 10-fold molar excess of a GC-rich clamp of synthesized and hybridized oligonucleotides, we achieved the maximum clamp-ligation efficiency in which the clamp was ligated to >95% of 10(10)-10(12) restriction ends of a PCR-amplified fragment. The maximum efficiency was confirmed by ligating the clamp to 10(11)-10(12) restriction ends of human genomic DNA. Our approach can be added to a constant denaturant capillary electrophoresis (CDCE)-based method of analyzing rare point mutants at fractions as low as 10(-6); such mutants appear as small copy numbers in the initial samples. This CDCE-based method alone is applicable to only those DNA sequences juxtaposed with an internally occurring clamp of a higher melting temperature in genomic DNA. Since such sequences represent 9% of the human genome, the addition of clamp ligation significantly increases the scanning range for the human genome without reducing the initial mutant copy numbers. Furthermore, clamp ligation/attachment without PCR prevents PCR-created mutants from interfering with rare mutational analysis. In addition to those applications seeking high-efficiency DNA ligation, our approach can be generally applied to ligation of restriction ends.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0003-2697(02)00383-4DOI Listing

Publication Analysis

Top Keywords

restriction ends
12
high-efficiency dna
8
dna ligation
8
clamp
8
clamp attachment
8
attachment polymerase
8
polymerase chain
8
chain reaction
8
genomic dna
8
cdce-based method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!