Microarchitectural and mechanical characterization of oriented porous polymer scaffolds.

Biomaterials

Orthopaedic Bioengineering Laboratory, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, NW IBB Building, Room 2311, Atlanta, GA 30332-0405, USA.

Published: February 2003

Biodegradable porous polymer scaffolds are widely used in tissue engineering to provide a structural template for cell seeding and extracellular matrix formation. Scaffolds must often possess sufficient structural integrity to temporarily withstand functional loading in vivo or cell traction forces in vitro. Both the mechanical and biological properties of porous scaffolds are determined in part by the local microarchitecture. Quantification of scaffold structure-function relationships is therefore critical for optimizing mechanical and biological performance. In this study, porous poly(L-lactide-co-DL-lactide) scaffolds with axially oriented macroporosity and random microporosity were produced using a solution coating and porogen decomposition method. Microarchitectural parameters were quantified as a function of porogen concentration using microcomputed tomography (micro-CT) analysis and related to compressive mechanical properties. With increasing porogen concentration, volume fraction decreased consistently due to microarchitectural changes in average strut thickness, spacing, and density. The three-dimensional interconnectivity of the scaffold porosity was greater than 99% for all porogen concentration levels tested. Over a porosity range of 58-80%, the average compressive modulus and ultimate strength of the scaffolds ranged from 43.5-168.3 MPa and 2.7-11.0 MPa, respectively. Thus, biodegradable porous polymer scaffolds have been produced with oriented microarchitectural features designed to facilitate vascular invasion and cellular attachment and with initial mechanical properties comparable to those of trabecular bone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(02)00361-7DOI Listing

Publication Analysis

Top Keywords

porous polymer
12
polymer scaffolds
12
porogen concentration
12
biodegradable porous
8
mechanical biological
8
mechanical properties
8
scaffolds
7
porous
5
microarchitectural
4
microarchitectural mechanical
4

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Protocol for the fabrication of self-standing (nano)cellulose-based 3D scaffolds for tissue engineering.

STAR Protoc

January 2025

Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE).

Three-dimensional (3D) and porous scaffolds made from nanocellulosic materials hold significant potential in tissue engineering (TE). Here, we present a protocol for fabricating self-standing (nano)cellulose-based 3D scaffolds designed for in vitro testing of cells from skin and cartilage tissues. We describe steps for preparation of nanocellulose ink, scaffold formation using 3D printing, and freeze-drying.

View Article and Find Full Text PDF

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!