The role of albumin in the mineralisation process of commercial hydroxyapatite (HAp) and synthesised biphasic (HAp-tricalcium phosphate) ceramics in a bufferless simulated inorganic plasma (HBSS) was investigated by conventional in vitro tests and static and dynamic wettability measurements. Albumin was either pre-adsorbed or solubilised in HBSS. It was found that calcium complexation by albumin plays a key role in early mineralisation kinetics, so that mineralisation is favoured when albumin is pre-adsorbed and hindered when it is dissolved in HBSS. In the biphasic ceramic this picture is complicated by the fact that albumin, in solution, seems to promote the dissolution of tricalcium phosphate, and simultaneously compete for calcium with the ceramic. It also appears that albumin has a stabilising effect of octacalcium phosphate present in deposits on commercial HAp. The same effect may be present in the case of the biphasic ceramic, at earlier mineralisation times, when octacalcium phosphate appears as a precursor of HAp. Octacalcium phosphate formation on commercial apatite is accompanied by carbonate substitution in phosphate positions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(02)00358-7 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
CPP SAS, Divonne-Les-Bains, France.
The first workshop on the "latest advances in biomedical applications of octacalcium phosphate (OCP)" was organized as a satellite symposium to the Bioceramics33 conference in Solothurn, Switzerland, in October 2023. The event brought together leading researchers and industry representatives to present and discuss their latest groundbreaking research aimed at developing and commercializing advanced OCP-based biomaterials for bone regeneration. The topics presented by the six invited speakers ranged from a fundamental understanding of the OCP crystal chemistry to advanced processing and characterization methods, functionalization, biomineralization, and commercialization.
View Article and Find Full Text PDFLangmuir
December 2024
Division of Craniofacial Function Engineering (Division of Biomaterials Science and Engineering), Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
This study was designed to investigate how the strength of the interaction between octacalcium phosphate (OCP) and modified chondroitin-A sulfate (CS-A), a glycosaminoglycan, regulates the adsorption-desorption of cytokines and subsequently affects the osteoblastic differentiation of mesenchymal stem cells (MSCs) in vitro. The utilization of cytokines produced by cells, such as macrophages, stimulated by the hydrolysis of OCP, is expected to enhance the bone regeneration capacity of the OCP. CS-Na was used to modify CS-A on the OCP immobilized with the amino group through electrostatic interactions.
View Article and Find Full Text PDFTohoku J Exp Med
November 2024
Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry.
Int J Biomater
November 2024
Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, Sao Paulo State University (UNESP), São Paulo, São Paulo, Brazil.
Bone loss in the alveolar ridge is a factor widely studied by dentists in implant surgeries, as it poses a major challenge for aesthetic and functional recovery in patients with large maxillary bone defects. Synthetic biomaterials function as grafts designed to replace and remodel bone tissue. Calcium phosphate is a biomaterial that has good properties such as biocompatibility and bioactivity, making it a reference in bone replacement treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!