Purpose: The multidrug resistance (mdr) gene family encodes the drug transport macromolecule P-glycoprotein (P-gp), which contributes to the functionality of the blood-brain barrier. Recent evidence suggests that P-gp-mediated drug extrusion may play a facilitatory role in refractory epilepsy. We investigated the regional expression of mdr genes in genetically epilepsy-prone rat (GEPR) brain after a single audiogenic seizure.

Methods: Three groups of adult male GEPRs (n = 5/group) were exposed to a seizure-inducing audiogenic stimulus and killed at 4 h, 24 h, and 7 days thereafter. A further group (n = 5) served as a stimulus-naïve control. Expression of mdr1a and mdr1b in distinct anatomic brain regions (cortex, midbrain, pons/medulla, hippocampus) was determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in the presence of competitive internal standards.

Results: When compared with control, mdr1a expression in cortex and midbrain was significantly (p < 0.05) increased at 24 h after a single audiogenic seizure. Cortical mdr1a expression remained elevated at 7 days after stimulus. In contrast, mdr1a expression in pons/medulla and hippocampus was unchanged. The mdr1b isoform was quantifiable in hippocampus alone and not influenced by seizure activity.

Conclusions: These findings suggest that acute seizures in the GEPR can induce the expression of mdr genes. The pattern of increased expression appears to follow the anatomic pathway of audiogenic seizures in these animals, with initiation in the midbrain and propagation to the cortex. Further studies are required to investigate the effects of recurrent seizure activity and to characterise mdr expression in other experimental seizure models.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1528-1157.2002.156702.xDOI Listing

Publication Analysis

Top Keywords

single audiogenic
12
mdr1a expression
12
regional expression
8
multidrug resistance
8
genes genetically
8
genetically epilepsy-prone
8
epilepsy-prone rat
8
brain single
8
audiogenic seizure
8
expression
8

Similar Publications

Genetic abnormalities affecting glutamate receptors are central to excitatory overload-driven neuronal mechanisms that culminate in seizures, making them pivotal targets in epilepsy research. Increasingly used to advance this field, the genetically audiogenic seizure hamster from Salamanca (GASH/Sal) exhibits generalized seizures triggered by high-intensity acoustic stimulation and harbors significant genetic variants recently identified through whole-exome sequencing. Here, we addressed the influence of the missense single-nucleotide polymorphism (C9586732T, p.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder characterized by abnormal neuronal excitability, with glutamate playing a key role as the predominant excitatory neurotransmitter involved in seizures. Animal models of epilepsy are crucial in advancing epilepsy research by faithfully replicating the diverse symptoms of this disorder. In particular, the GASH/Sal (genetically audiogenic seizure-prone hamster from Salamanca) model exhibits seizures resembling human generalized tonic-clonic convulsions.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) is a hormone that can regulate several neuronal functions. The modulation of GLP-1 receptors emerged as a potential target to treat several neurological diseases, such as epilepsy. Here, we studied the effects of acute and chronic treatment with liraglutide (LIRA), in genetically epilepsy prone rats (GEPR-9s).

View Article and Find Full Text PDF

Angelman syndrome (AS) is a severe neurodevelopmental disorder for which only symptomatic treatment with limited benefits is available. AS is caused by mutations affecting the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene. Previous studies showed that the silenced paternal Ube3a gene can be activated by targeting the antisense Ube3a-ATS transcript.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!