Human cytochrome P450 17alpha-hydroxylase (CYP17) catalyses not only the 17alpha-hydroxlation of pregnenolone and progesterone and the C17,20-side chain cleavage (lyase) of 17alpha-hydroxypregnenolone, necessary for the biosynthesis of C21-glucocorticoids and C19-androgens, but also catalyses the 16alpha-hydroxylation of progesterone. In efforts to understand the complex enzymology of CYP17, structure/function relationships have been reported previously after expressing recombinant DNAs, encoding CYP17 from various species, in nonsteroidogenic mammalian or yeast cells. A major difference between species resides in the lyase activity towards the hydroxylated intermediates and in the fact that the secretion of C19-steroids take place, in some species, principally in the gonads. Because human and higher primate adrenals secrete steroids, CYP17 has been characterized in the Cape baboon, a species more closely related to humans, in an effort to gain a further understanding of the reactions catalysed by CYP17. Baboon and human CYP17 cDNA share 96% homology. Baboon CYP17 has apparent Km and V values for pregnenolone and progesterone of 0.9 micro m and 0.4 nmol.h-1.mg protein-1 and 6.5 micro m and 3.9 nmol.h-1.mg protein-1, respectively. Baboon CYP17 had a significantly higher activity for progesterone hydroxylation relative to pregnenolone. No 16alpha-hydroxylase and no lyase activity for 17alpha-hydroxyprogesterone. Sequence analyses showed that there are 28 different amino acid residues between human and baboon CYP17, primarily in helices F and G and the F-G loop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1033.2002.03268.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!