We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2002.03245.xDOI Listing

Publication Analysis

Top Keywords

cu2+ concentration
24
urate
10
concentration
9
cu2+
9
low-density lipoprotein
8
cu2+-induced oxidation
8
depending cu2+
8
high cu2+
8
ldl oxidation
8
low cu2+
8

Similar Publications

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

One Step Visual Homogeneous Immunoassay of a Rheumatoid Arthritis Biomarker in Serum via Target-Regulated Steric Hindrance and Competitive Recognition.

Anal Chem

January 2025

Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Med+X Center for Manufacturing, Department of Rheumatology & Immunology, National Clinical Research Center for Geriatrics, Department of Gynecology of West China Tianfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Homogeneous analysis techniques offer several advantages as alternatives to heterogeneous immunoassays, such as simplicity and rapidity. In this study, a visual homogeneous immunoassay without a labeling process was developed based on target-induced steric hindrance to regulate competitive recognition mechanism. Specifically, as the analyte concentration varies, the change of microenvironment based on steric hindrance could affect the recognition of Cu by signal probes.

View Article and Find Full Text PDF

Spontaneous cleavage reactions normally occur in vivo on amino acid peptide backbones, leading to fragmentation products that can have different physiological roles and toxicity, particularly when the substrate of the hydrolytic processes are neuronal peptides and proteins highly related to neurodegeneration. We report a hydrolytic study performed with the HPLC-MS technique at different temperatures (4 °C and 37 °C) on peptide fragments of different neuronal proteins (amyloid-β, tau, and α-synuclein) in physiological conditions in the presence of Cu and Zn ions, two metal ions found at millimolar concentrations in amyloid plaques. The coordination of these metal ions with these peptides significantly protects their backbones toward hydrolytic degradation, preserving the entire sequences over two weeks in solution, while the free peptides in the same buffer are fully fragmented after the same or even shorter incubation period.

View Article and Find Full Text PDF

[Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Urumqi 830017, Xinjiang, China.

To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from with a high protease yield from the barren saline-alkali soil and expressed this gene in . The expressed chitosanase of . (BA-CSN) was purified by nickel-affinity column chromatography.

View Article and Find Full Text PDF

Novel anionic functionalized magnetic β-cyclodextrin composites with excellent adsorption capacity for moxifloxacin and wide pH adaptive adsorption capability for copper ion.

Environ Res

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.

Antibiotics and heavy metals pose severe risks to human health and ecological environment. Therefore, developing a multifunctional adsorbent to remove these contaminants from wastewater is an urgent need. Herein, novel anionic sulfonic acid groups functionalized magnetic β-cyclodextrin (β-CD) composites (FCD@AA) were synthesized by coating poly(2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS)) on the surface of magnetic β-CD particles (FCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!