In the 1st part of this study, monosynaptic excitatory postsynaptic potentials (EPSPs) in layer V of the rat prefrontal cortex (PFC) were evoked by electrical stimulation of layer I. Recordings with intracellular sharp, microelectrodes showed a concentration-dependent inhibition of the EPSP by adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-S). Pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), when given alone depressed the EPSP and in addition antagonized the effect of ADP-beta-S. Exclusion of the N-methyl-D-aspartate (NMDA) component of the EPSP by D(.)-amino-5-phosphonopentanoic acid (AP-5) abolished the ADP-beta-S-induced depression. The pressure-application of both NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) caused reproducible depolarizations. ADP-beta-S inhibited the effect of NMDA, but did not alter that of AMPA. PPADS was also under these conditions antagonistic with ADP-beta-S. In the 2nd part of the study, NMDA-induced currents were measured by whole-cell patch-clamp pipettes. ADP-beta-S caused a concentration-dependent inhibition of the responses to NMDA. PPADS alone did not alter the NMDA-currents but again antagonized the action of ADP-beta-S; 2'-deoxy-N(6)-methyladenosine-3',5'-diphosphate (MRS 2179) also abolished the NMDA effect. The ADP-beta-S-induced inhibition persisted in the presence of tetrodotoxin (TTX) or guanosine 5'-O-(3-thiodiphosphate) (GDP-beta-S) applied to the external medium and the pipette solution, respectively. The 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) moderately decreased the ADP-beta-S effect. The inhibitory function of ADP-beta-S on EPSPs and the interaction with PPADS was observed also in layer V pyramidal neurons of the parietal somatosensory cortex. In conclusion, metabotropic P2Y(1) receptors appear to exert a new modulatory influence on fast excitatory amino acid transmission in the cerebral cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0197-0186(02)00069-4 | DOI Listing |
Innovation (Camb)
January 2025
Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.
Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Department of Biomedical Sciences, Joan C Edwards School of Medicine at Marshall University, 1700 3(rd) Avenue, Huntington, WV 25703, USA. Electronic address:
With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFiScience
January 2025
Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany.
The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!