Aim: To assess the ability of sickle cells to interfere with the release or transfer of endothelium-derived relaxing factor (EDRF) in comparison to normal erythrocytes.
Methods: A perfusion-superfusion bioassay system was used a canine carotid artery with endothelium (donor of EDRF) and a ring of the same vessel without endothelium (detector) were separated by tubing resulting in a five second interval for transfer of EDRF from donor to detector. Changes in isometric tension were monitored in both the donor and the detector preparations. Release of EDRF, as determined by sustained relaxations during the contractions to phenylephrine, was induced by infusing acetylcholine through the donor artery.
Results: Superfusion with normal and sickle erythrocytes caused impairment of the endothelium-dependent relaxations in both detector and donor tissues. When infused through the transfer line, sickle cells were less potent than normal erythrocytes in inhibiting relaxation in the detector tissues. In contrast, infusion of either normal erythrocytes or sickle cell through the donor artery caused similar degrees of inhibition in donor and detector arteries. Hemolysates from both types of erythrocytes were equieffective at either site of infusion.
Conclusion: These results indicate that sickle cells are intrinsically less potent scavengers of EDRF than normal erythrocytes. However, exposure to the endothelium enhances the ability of sickle cells to inhibit lumenal release of endothelium-derived relaxing factor.
Download full-text PDF |
Source |
---|
Tissue Cell
January 2025
Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy.
: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.
View Article and Find Full Text PDFExpert Rev Respir Med
January 2025
Department of Surgery, Dentistry, Pediatrics and Gynaecology, Pediatric Division, University of Verona, Verona, Italy.
Introduction: Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by the production of sickle hemoglobin, leading to red blood cells sickling and hemolysis in hypoxic conditions. The resulting acute and chronic endothelial inflammation leads to chronic organ damage. Respiratory manifestations in SCD usually start from childhood and represent the leading causes of morbidity and mortality.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States.
Sickle cell disease (SCD) is a devastating hemolytic disease, marked by recurring bouts of painful vaso-occlusion, leading to tissue damage from ischemia/reperfusion pathophysiology. Central to this process are oxidative stress, endothelial cell activation, inflammation, and vascular dysfunction. The endothelium exhibits a pro-inflammatory, pro-coagulant, and enhanced permeability phenotype.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!