In the corn smut fungus Ustilago maydis, pathogenic development is controlled by the b mating type locus that encodes the two homeodomain proteins bE and bW. A heterodimer of bE and bW controls a large set of genes, either directly by binding to cis regulatory sequences or indirectly via a b-dependent regulatory cascade. It is thought that several of the b-regulated genes contribute to processes involved in pathogenicity. In a screen for components of the b-dependent regulatory cascade we have isolated Hda1, a protein with homology to histone deacetylases of the RPD3 class. Hda1 can substitute for the histone deacetylase RPD3 in Saccharomyces cerevisiae, showing that it functions as a histone deacetylase. Deletion of hda1 results in the expression of several genes that are normally expressed only in the dikaryon, among these are several genes that are now expressed independently from their activation by the bE/bW heterodimer. hda1 mutant strains are capable to infect corn, and the proliferation of dikaryotic hyphae within the plant appears comparable to wild-type strains during initial developmental stages. Upon karyogamy, however, the proliferation to mature teliospores is blocked. The block in sporogenesis in Deltahda1 strains is probably a result of the deregulation of a specific set of genes whose temporal or spatial expression prevent the proper developmental progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2958.2002.03238.x | DOI Listing |
Mol Neurodegener
January 2025
Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.
View Article and Find Full Text PDFLife Sci
January 2025
Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Nephrology, Affiliated Hospital of Jiaxing University (The First Hospital of Jiaxing), No.1882, Zhonghuan North Road, Jiaxing, 314000, Zhejiang, China.
Background: Dysfunction in podocyte mitophagy has been identified as a contributing factor to the onset and progression of diabetic nephropathy (DN), and BMAL1 plays an important role in the regulation of mitophagy. Thus, this study intended to examine the impact of BMAL1 on podocyte mitophagy in DN and elucidate its underlying mechanisms.
Materials And Methods: High D-glucose (HG)-treated MPC5 cells was used as a podocyte injury model for investigating the potential roles of BMAL1 in DN.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!