Nitroglycerin has been widely used as a model of experimental migraine. Studies combining measurement of flow velocity using transcranial Doppler (TCD) concurrently with measures of cerebral blood flow (CBF) are uncommon. We report the results of a study combining TCD and positron emission tomography (PET). Healthy volunteers with no personal or family history of migraine underwent measurement of CBF using H215O PET, and velocity using TCD. Measurements were done at baseline, and following i.v. nitroglycerin at 0.125, 0.25 and 0.5 micro g/kg per min. Subcutaneous sumatriptan (6 mg) was injected, with CBF and velocity measured 15, 30, and 60 min later. Nitroglycerin was terminated and measurements obtained 30 min later. Six male and six female subjects were studied. Nitroglycerin increased global CBF while flow velocities decreased. Sumatriptan did not have a significant effect on these values. Regions of increased flow included the anterior cingulate, while regions of decreased flow included the occipital cortex. Our data suggest that nitroglycerin induces regional changes in CBF that are similar to changes reported in spontaneous migraine, but produces distinctly different effects on global CBF and velocity.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1468-2982.2002.00440.xDOI Listing

Publication Analysis

Top Keywords

blood flow
8
positron emission
8
emission tomography
8
transcranial doppler
8
cbf velocity
8
global cbf
8
flow included
8
flow
6
nitroglycerin
6
cbf
6

Similar Publications

Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disease of the central nervous system, characterized by progressive demyelination and inflammation. MS is characterized by immune system attacks on the myelin sheath surrounding nerve fibers. Genome-wide association studies revealed a polymorphism in the signal transducer and activator of transcription 4 (STAT4) gene that increases risk for MS.

View Article and Find Full Text PDF

Objective: Immune-related pancytopenia (IRP) is characterized by autoantibody-mediated destruction or suppression of bone marrow cells, leading to pancytopenia. This study aimed to explore the role of TRAPPC4 (trafficking protein particle complex subunit 4) as a key autoantigen in IRP, including epitope identification and immune activation mechanisms.

Methods: A total of 90 participants were included in the study, divided into four groups: 30 newly diagnosed IRP patients, 25 IRP remission patients, 20 patients with control hematologic conditions (severe aplastic anemia [SAA] and myelodysplastic syndrome [MDS]), and 15 healthy controls.

View Article and Find Full Text PDF

Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.

Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!