We have developed and applied single live cell imaging for real-time monitoring of resistance kinetics of Pseudomonas aeruginosa. Real-time images of live cells in the presence of a particular substrate (EtBr) provided the first direct insights of resistance mechanism with both spatial and temporal information and showed that the substrate appeared to be accumulated in cytoplasmic space, but not periplasmic space. Three mutants of P. aeruginosa, PAO4290 (a wild-type expression level of MexAB-OprM), TNP030#1 (nalB-1, MexAB-OprM over expression mutant), and TNP076 (DeltaABM, MexAB-OprM deficient mutant), were used to investigate the roles of these three membrane proteins (MexAB-OprM) in the resistance mechanism. Ethidium bromide (EtBr) was chosen as a fluorescence probe for spectroscopic measurement of bulk cell solution and single cell imaging of bulk cells. Bulk measurement indicated, among three mutants, that nalB-1 accumulated the least EtBr and showed the highest resistance to EtBr, whereas DeltaABM accumulated the most EtBr and showed the lowest resistance to EtBr. This result demonstrated the MexAB-OprM proteins played the roles in resistance mechanism by extruding EtBr out of cells. Unlike the bulk measurement, imaging and analysis of bulk cells at single cell resolution demonstrated individual cell had its distinguished resistance kinetics and offered the direct observation of the regulation of influx and efflux of EtBr with both spatial and temporal resolution. Unlike fluorescent staining assays, live cell imaging provided the real-time kinetic information of transformation of membrane permeability and efflux pump machinery of three mutants. This research constitutes the first direct imaging of resistance mechanism of live bacterial cells at single cell resolution and opens up the new possibility of advancing the understanding of bacteria resistance mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.1506707DOI Listing

Publication Analysis

Top Keywords

resistance mechanism
24
cell imaging
16
live cell
12
three mutants
12
single cell
12
resistance
10
single live
8
cell
8
imaging real-time
8
real-time monitoring
8

Similar Publications

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.

Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!