Non-cholinergic strategies for treating and preventing Alzheimer's disease.

CNS Drugs

Department of Psychiatry, Duke University Medical Center, Durham, North Carolina 27710, USA.

Published: April 2003

The pathophysiology of Alzheimer's disease is complex and involves several different biochemical pathways. These include defective beta-amyloid (Abeta) protein metabolism, abnormalities of glutamatergic, adrenergic, serotonergic and dopaminergic neurotransmission, and the potential involvement of inflammatory, oxidative and hormonal pathways. Consequently, these pathways are all potential targets for Alzheimer's disease treatment and prevention strategies. Currently, the mainstay treatments for Alzheimer's disease are the cholinesterase inhibitors, which increase the availability of acetylcholine at cholinergic synapses. Since the cholinesterase inhibitors confer only modest benefits, additional non-cholinergic Alzheimer's disease therapies are urgently needed. Several non-cholinergic agents are currently under development for the treatment and/or prevention of Alzheimer's disease. These include anti-amyloid strategies (e.g. immunisation, aggregation inhibitors, secretase inhibitors), transition metal chelators (e.g. clioquinol), growth factors, hormones (e.g. estradiol), herbs (e.g. Ginkgo biloba), nonsteroidal anti-inflammatory drugs (NSAIDs, e.g. indomethacin), antioxidants, lipid-lowering agents, antihypertensives, selective phosphodiesterase inhibitors, vitamins (E, B12, B6, folic acid) and agents that target neurotransmitter or neuropeptide alterations. Neurotransmitter receptor-based approaches include agents that modulate certain receptors (e.g. nicotinic, muscarinic, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid [AMPA], gamma-aminobutyric acid [GABA], N-methyl-D-aspartate [NMDA]) and agents that increase the availability of neurotransmitters (e.g. noradrenergic reuptake inhibitors). Of these strategies, the NMDA receptor antagonist memantine is in the most advanced stage of development in the US and is already approved in Europe as the first treatment for moderately severe to severe Alzheimer's disease. Memantine is proposed to counteract cellular damage due to pathological activation of NMDA receptors by glutamate. Results with Ginkgo biloba have been mixed. Data for neurotrophic therapies and vitamin E (tocopherol) appear promising but require confirmation. NSAIDs and conjugated estrogens have not proven to be of value to date for the treatment of Alzheimer's disease. Statins may have a potential role in reducing the risk or delaying the onset of Alzheimer's disease, although this has yet to be confirmed in randomised trials. There are currently no data to support the use of statins as a treatment for dementia. This article provides an update on the current status of selected agents, focusing primarily on those agents with the most extensive clinical evidence at present.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00023210-200216120-00003DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
36
alzheimer's
9
disease
9
cholinesterase inhibitors
8
increase availability
8
ginkgo biloba
8
agents
7
inhibitors
6
treatment
5
non-cholinergic strategies
4

Similar Publications

Major depressive disorder (MDD) is defined by an array of symptoms that make it challenging to understand the condition at a population level. Subtyping offers a way to unpick this phenotypic diversity for improved disorder characterisation. We aimed to identify depression subtypes longitudinally using the Inventory of Depressive Symptomatology: Self-Report (IDS-SR).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!