A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Determination of T1rhoH relaxation rates in charred and uncharred wood and consequences for NMR quantitation. | LitMetric

Determination of T1rhoH relaxation rates in charred and uncharred wood and consequences for NMR quantitation.

Solid State Nucl Magn Reson

Department of Soil and Water, Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, SA, Australia.

Published: August 2002

The performance of three different techniques for determining proton rotating frame relaxation rates (T1rhoH) in charred and uncharred woods is compared. The variable contact time (VCT) experiment is shown to over-estimate T1rhoH. particularly for the charred samples, due to the presence of slowly cross-polarizing 13C nuclei. The variable spin (VSL) or delayed contact experiment is shown to overcome these problems; however, care is needed in the analysis to ensure rapidly relaxing components are not overlooked. T1rhoH is shown to be non-uniform for both charred and uncharred wood samples; a rapidly relaxing component (T1rhoH = 0.46-1.07 ms) and a slowly relaxing component (T1rhoH = 3.58-7.49) is detected in each sample. T1rhoH for each component generally decreases with heating temperature (degree of charring) and the proportion of rapidly relaxing component increases. Direct T1rhoH determination (via 1H detection) shows that all samples contain an even faster relaxing component (0.09-0.24 ms) that is virtually undetectable by the indirect (VCT and VSL) techniques. A new method for correcting for T1rhoH signal losses in spin counting experiments is developed to deal with the rapidly relaxing component detected in the VSL experiment. Implementation of this correction increased the proportion of potential 13C CPMAS NMR signal that can be accounted for by up to 50% for the charred samples. An even greater proportion of potential signal can be accounted for if the very rapidly relaxing component detected in the direct T1rhoH determination is included; however, it must be kept in mind that this experiment also detects 1H pools which may not be involved in 1H-13C cross-polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1006/snmr.2002.0064DOI Listing

Publication Analysis

Top Keywords

relaxing component
24
rapidly relaxing
20
charred uncharred
12
t1rhoh
9
relaxation rates
8
uncharred wood
8
t1rhoh charred
8
charred samples
8
component t1rhoh
8
direct t1rhoh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!