Polishing of secondary effluent by an algal biofilm process.

Water Sci Technol

Institute of Wastewater, Technical University of Hamburg-Harburg, Hamburg, Germany.

Published: February 2003

The potential in polishing secondary effluent by an algal biofilm composed of different green and bluegreen algae was investigated. During the photosynthesis process of algal biofilm oxygen was produced while dissolved carbon dioxide was consumed. This led to an increasing pH due to the change of the carbon dioxide equilibrium in water. The high pH caused precipitation of dissolved phosphates. The attached algae took up nitrogen and phosphorus during the growth of biomass. In addition to nutrient removal, an extensive removal of faecal bacteria was observed probably caused by adsorption of the algal biofilm and by photooxidation involving dissolved oxygen. The experimental results suggest that a low-cost, close to nature process especially for small wastewater treatment plants for nutrient removal and bacteria reduction can be developed with the aid of an algal biofilm.

Download full-text PDF

Source

Publication Analysis

Top Keywords

algal biofilm
20
polishing secondary
8
secondary effluent
8
effluent algal
8
carbon dioxide
8
nutrient removal
8
algal
5
biofilm
5
biofilm process
4
process potential
4

Similar Publications

The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF
Article Synopsis
  • Glacier-fed streams (GFS) are extreme aquatic ecosystems with little nutrients and fluctuating environments, where microorganisms predominantly form biofilms.
  • Researchers analyzed 156 metagenomes from various mountain ranges, revealing thousands of metagenome-assembled genomes (MAGs) of prokaryotes, algae, fungi, and viruses that demonstrate complex biotic interactions in these biofilms.
  • The study found that as glaciers shrink, biofilms transition from using inorganic energy sources to relying more on heterotrophy as algal biomass increases, highlighting the adaptability of microbial life in these unique ecosystems amid climate change.
View Article and Find Full Text PDF

Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca and Mg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!