Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The influence of chlorine on biofilm in low organic carbon environments typical of drinking water or industrial process water was examined by comparing biomass and kinetic parameters for biofilm growth in a chlorinated reactor to those in a non-chlorinated control. Mixed-population heterotrophic biofilms were developed in rotating annular reactors under low concentration, carbon-limited conditions (< 2 mg/L as carbon) using three substrate groups (amino acids, carbohydrates and humic substances). Reactors were operated in parallel under identical conditions with the exception that chlorine was added to one reactor at a dose sufficient to maintain a free chlorine residual of 0.09-0.15 mg/L in the effluent. The presence of free chlorine resulted in development of less biofilm biomass compared to the control for all substrates investigated. However, specific growth and organic carbon removal rates were on the average five times greater for chlorinated biofilm compared to the control. Observed yield values were less for chlorinated biofilm. Although chlorinated biofilm's specific organic carbon removal rate was high, the low observed yield indicated organic carbon was being utilized for purposes other than creating new cell biomass. The impacts of free chlorine on mixed-population biofilms in low-nutrient environments were different depending upon the available substrate. Biofilms grown using amino acids exhibited the least difference between control and chlorinated kinetic parameters; biofilm grown using carbohydrates had the greatest differences. These findings are particularly relevant to the fundamental kinetic parameters used in models of biofilm growth in piping systems that distribute chlorinated, low-carbon-concentration water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0043-1354(02)00148-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!