Previously, it was shown that inactivation of the tricarboxylic acid cycle aconitase gene acnA impairs the morphological and physiological differentiation of Streptomyces viridochromogenes Tü494, which produces the herbicide phosphinothricin tripeptide (PTT). In order to further characterize the role of the aconitase in the Streptomyces life cycle, aconitase activity was analyzed during growth of S. viridochromogenes in liquid culture. Two prominent maxima were measured in cell-free crude extracts. The first maximum was found at an early stage of growth, which is correlated with a decrease in pH when rapid glucose consumption is initiated. The second, lower maximum was detected at the beginning of the expression of the PTT-specific biosynthetic gene phsA,implying the onset of secondary metabolism. These results were confirmed by examining transcription of the acnA promoter in time-course experiments. The highest transcription rate was found during the early growth phases. In order to identify putative regulatory mechanisms, the transcriptional start site of the acnA transcript and subsequently the promoter were identified. Several putative, regulatory protein binding sites (e.g. regulators of oxygen stress or iron metabolism) were detected in the promoter region of acnA, which suggested complex regulation of acnA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-002-0483-6 | DOI Listing |
Nucleic Acids Res
December 2024
Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, 76 Lipman Dr, New Brunswick, NJ 08901, USA.
Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.
View Article and Find Full Text PDFTwo aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia.
In this study, we first thoroughly assayed the response of the key enzymes of energy metabolism and the antioxidant system in yeast at extreme pH. The activity of the tricarboxylic acid cycle enzymes, namely NAD-dependent isocitrate dehydrogenase, aconitate hydratase, NAD-dependent malate dehydrogenase, and fumarate hydratase, NADPH-producing enzymes of glucose-6-P dehydrogenase and NADP-dependent isocitrate dehydrogenase, and the enzymes of the glutathione system was assessed. All the enzymes that were tested showed a significant induction contrary to some decrease in the aconitate hydratase activity with acidic and alkaline stress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2024
College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
Salmonella, a common pathogenic bacterium in food, can have a severe impact on food safety and consumer health. At present, Salmonella infection is controlled primarily by the use of antibiotics, which creates unsafe factors for food safety. Thus, finding a natural antibacterial agent is highly practical.
View Article and Find Full Text PDFAnal Chem
November 2024
Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832002, China.
The differentiation and maturation of osteoblasts are essential for bone formation. Zn plays a crucial role in cell differentiation and is involved in osteogenic differentiation. The concentration and distribution of Zn in the nucleus and cytoplasm indicate the differentiation states of osteoblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!