3-Nitrobenzanthrone (3-NBA) an extremely potent mutagen and suspected human carcinogen identified in diesel exhaust and in airborne particulate matter was shown to form multiple DNA adducts in vitro and in vivo in rats. In order to investigate whether human N,O-acetyltransferases (NATs) and sulfotransferases (SULTs) contribute to the metabolic activation of 3-NBA we used a panel of newly constructed Chinese hamster lung fibroblast V79MZ derived cell lines expressing human NAT1, human NAT2 or human SULT1A1, as well as TA1538-derived Salmonella typhimurium strains expressing human NAT1 (DJ400) or human NAT2 (DJ460) and determined DNA binding and mutagenicity. The formation of 3-NBA-derived DNA adducts was analysed by (32)P-postlabelling after exposing V79 cells to 0.01 micro M 3-NBA or 0.1 micro M N-acetyl-N-hydroxy-3-aminobenzanthrone (N-Ac-N-OH-ABA), a potential metabolite of 3-NBA. Similarly up to four major and two minor adducts were detectable for both compounds, the major ones being identical to those detected previously in DNA from rats treated with 3-NBA. Comparison of DNA binding between different V79MZ derived cells revealed that human NAT2 and, to a lesser extent, human NAT1 and human SULT1A1, contribute to the genotoxic potential of 3-NBA and N-Ac-N-OH-ABA to form DNA adducts. However, the extent of DNA binding by 3-NBA was higher in almost all V79 cells at a 10-fold lower concentration than by N-Ac-N-OH-ABA, suggesting that N-Ac-N-OH-ABA is not a major intermediate in the formation of 3-NBA-derived adducts. 3-NBA showed a 3.8-fold and 16.8-fold higher mutagenic activity in Salmonella strains expressing human NAT1 and human NAT2, respectively, than in the acetyltransferase-deficient strain, whereas N-Ac-N-OH-ABA was only clearly (but weakly) mutagenic in Salmonella DJ460 expressing human NAT2. This finding suggests that N-Ac-N-OH-ABA is not a major reactive metabolite responsible for the high mutagenic potency of 3-NBA in Salmonella. Collectively our results indicate that O-acetylation and O-sulfonation by human NATs and SULTs may contribute significantly to the high mutagenic and genotoxic potential of 3-NBA. Moreover, the yet-unidentified four major 3-NBA-derived adducts may be DNA adducts without an N-acetyl group.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/23.11.1937DOI Listing

Publication Analysis

Top Keywords

human nat2
20
dna adducts
16
expressing human
16
human nat1
16
human
15
nat1 human
12
dna binding
12
3-nba
10
metabolic activation
8
dna
8

Similar Publications

Tuberculosis (TB) is a major health burden in Africa. Although TB is treatable, anti-TB drugs are associated with adverse drug reactions (ADRs), which are partly attributed to pharmacogenetic variation. The distribution of star alleles (haplotypes) influencing anti-TB drug metabolism is unknown in many African populations.

View Article and Find Full Text PDF

Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of , and .

Int J Mol Sci

December 2024

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.

Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.

View Article and Find Full Text PDF

One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) is the leading infectious cause of death globally. Despite WHO recommendations for TB preventive therapy (TPT), challenges persist, including incompletion of treatment and adverse drug reactions (ADRs). There is limited data on the 3-month isoniazid and rifapentine (3HP) pharmacokinetics, pharmacogenomics and their relation with ADRs.

View Article and Find Full Text PDF

Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!