Recent studies have shown that aspartoacylase (ASPA), the defective enzyme in Canavan disease, is detectable in the brain only in the oligodendrocytes. Studying the regulation of ASPA is central to the understanding the pathogenesis of Canavan disease and to the development of therapeutic strategies. Toward this goal, we have developed a sensitive method for the assay of ASPA in cultured oligodendrocytes. The method involves: (a) chemical synthesis of [14C]N-acetylaspartate (NAA) from L-[14C]Asp; (b) use of [14C]NAA as substrate in the assay; and (c) separation and quantitation of the product L-[14C]Asp using a TLC system. This method can detect as low as 10pmol of product and has been optimized for cultured oligodendrocytes. Thus, this method promises to be a valuable tool for understanding the biochemical mechanisms involved in the cell-specific expression and regulation of ASPA in oligodendrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0003-2697(02)00225-7 | DOI Listing |
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany.
Oligodendroglial cells generate myelin sheaths in the vertebrate central nervous system to render rapid saltatory conduction possible and express the highly related Sox8, Sox9 and Sox10 transcription factors. While Sox9 and Sox10 fulfill crucial regulatory roles, Sox8 has only a limited impact on oligodendroglial development and myelination. By replacing Sox10 with Sox8 or Sox9 in the oligodendroglial Oln93 cell line, and comparing the expression profiles, we show here that Sox8 regulates the same processes as Sox10 and Sox9, but exhibits a substantially lower transcriptional activity under standard culture conditions.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA.
It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such human tissues, but the maintenance of other cell types within explanted brain remains largely unknown.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.
View Article and Find Full Text PDFGlia
January 2025
Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, Kentucky, USA.
Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!