A synthetic cruciform DNA (X-DNA) was used for screening cellular extracts of Saccharomyces cerevisiae for X-DNA-binding activity. Three X-DNA-binding proteins with apparent molecular mass of 28kDa, 26kDa and 24kDa, estimated by SDS-PAGE, were partially purified. They were identified as N-terminal fragments originating from the same putative protein, encoded by the open reading frame YHR146W, which we named CRP1 (cruciform DNA-recognising protein 1). Expression of CRP1 in Escherichia coli showed that Crp1p is subject to efficient proteolysis at one specific site. Cleavage leads to an N-terminal subpeptide of approximately 160 amino acid residues that is capable of binding specifically X-DNA with an estimated dissociation constant (K(d)) of 800nM, and a C-terminal subpeptide of approximately 305 residues without intrinsic X-DNA-binding activity. The N-terminal subpeptide is of a size similarly to that of the fragments identified in yeast, suggesting that the same cleavage process occurs in the yeast and the E.coli background. This makes the action of a site-specific protease unlikely and favours the possibility of an autoproteolytic activity of Crp1p. The DNA-binding domain of Crp1p was mapped to positions 120-141. This domain can act autonomously as an X-DNA-binding peptide and provides a new, lysine-rich DNA-binding domain different from those of known cruciform DNA-binding proteins (CBPs). As reported earlier for several other CBPs, Crp1p exerts an enhancing effect on the cleavage of X-DNA by endonuclease VII from bacteriophage T4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-2836(02)00993-2DOI Listing

Publication Analysis

Top Keywords

cruciform dna-binding
8
saccharomyces cerevisiae
8
x-dna-binding activity
8
n-terminal subpeptide
8
dna-binding domain
8
crp1p
5
crp1p cruciform
4
dna-binding
4
dna-binding protein
4
protein yeast
4

Similar Publications

Article Synopsis
  • The deregulation of a specific transcription factor is key in the development of T cell acute lymphoblastic leukemia (T-ALL), mainly due to mutations in exon 4 that disrupt its DNA-binding ability.
  • The study highlights the role of Activation-induced cytidine deaminase (AID) in mutagenesis, showing that AID is present in T-ALL cells and creates distinct mutation patterns by binding to fragile regions in the DNA.
  • AID's binding leads to the formation of complex DNA structures that can cause errors during replication, ultimately resulting in harmful mutations that impair the transcription factor's function and contribute to the onset of T-ALL.
View Article and Find Full Text PDF

In eubacteria, Holliday junction (HJ) resolvases (HJRs) are crucial for faithful segregation of newly replicated chromosomes, homologous recombination, and repair of stalled/collapsed DNA replication forks. However, compared with the Escherichia coli HJRs, little is known about their orthologs in mycobacterial species. A genome-wide analysis of Mycobacterium smegmatis identified two genes encoding putative HJRs, namely RuvC (MsRuvC) and RuvX (MsRuvX); but whether they play redundant, overlapping, or distinct roles remains unknown.

View Article and Find Full Text PDF

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp.

View Article and Find Full Text PDF

DNA secondary structures are essential elements of the genomic landscape, playing a critical role in regulating various cellular processes. These structures refer to G-quadruplexes, cruciforms, Z-DNA or H-DNA structures, amongst others (collectively called 'non-B DNA'), which DNA molecules can adopt beyond the B conformation. DNA secondary structures have significant biological roles, and their landscape is dynamic and can rearrange due to various factors, including changes in cellular conditions, temperature, and DNA-binding proteins.

View Article and Find Full Text PDF

BLM and BRCA1-BARD1 coordinate complementary mechanisms of joint DNA molecule resolution.

Mol Cell

February 2024

Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK. Electronic address:

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!