Identification of amino acid residues critical for catalysis and stability in Aspergillus niger family 1 pectin lyase A.

Biochem J

Section Molecular Genetics of Industrial Microorganisms, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands.

Published: February 2003

Site-directed-mutagenesis studies were performed on family 1 pectin lyase A (PL1A) from Aspergillus niger to gain insight into the reaction mechanism for the pectin lyase-catalysed beta-elimination cleavage of methylesterified polygalacturonic acid and to stabilize the enzyme at slightly basic pH. On the basis of the three-dimensional structures of PL1A [Mayans, Scott, Connerton, Gravesen, Benen, Visser, Pickersgill and Jenkins (1997) Structure 5, 677-689] and the modelled enzyme-substrate complex of PL1B [Herron, Benen, Scavetta, Visser and Jurnak (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 8762-8769], Asp154, Arg176, Arg236 and Lys239 were mutagenized. Substituting Arg236 with alanine or lysine rendered the enzyme completely inactive, and mutagenesis of Arg176 and Lys239 severely affected catalysis. The Asp154-->Arg and Asp154-->Glu mutant enzymes were only moderately impaired in respect of catalysis. The results strongly indicate that Arg236, which is sandwiched between Arg176 and Lys239, would initiate the reaction upon enzyme-substrate interaction, through the abstraction of the proton at C5 of the galacturonopyranose ring. The positively charged residues Arg176 and Lys239 are responsible for lowering the p K a of Arg236. Arg176 and Lys239 are maintained in a charged state by interacting with Asp154 or bulk solvent respectively. The deprotonation of the Asp186-Asp221 pair was proposed to be responsible for a pH-driven conformational change of PL1A [Mayans, Scott, Connerton, Gravesen, Benen, Visser, Pickersgill and Jenkins (1997) Structure 5, 677-689]. Substitution of Asp186 and Asp221 by Asn186 and Asn221 was expected to stabilize the enzyme. However, the Asp186-->Asn/Asp221-->Asn enzyme appeared less stable than the wild-type enzyme, even at pH 6.0, as evidenced by fluorescence studies. This demonstrates that the pH-dependent conformational change is not driven by deprotonation of the Asp186-Asp221 pair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223150PMC
http://dx.doi.org/10.1042/BJ20021071DOI Listing

Publication Analysis

Top Keywords

arg176 lys239
16
aspergillus niger
8
family pectin
8
pectin lyase
8
stabilize enzyme
8
pl1a [mayans
8
[mayans scott
8
scott connerton
8
connerton gravesen
8
gravesen benen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!