AI Article Synopsis

Article Abstract

Kinetic studies of the reactions of [M(CO)(L-L)I] [M = Rh, Ir; L-L = Ph(2)PCH(2)P(S)Ph(2) (dppms), Ph(2)PCH(2)CH(2)PPh(2) (dppe), and Ph(2)PCH(2)P(O)Ph(2) (dppmo)] with methyl iodide have been undertaken. All the chelate ligands promote oxidative addition of methyl iodide to the square planar M(I) centers, by factors of between 30 and 50 compared to the respective [M(CO)(2)I(2)](-) complexes, due to their good donor properties. Migratory CO insertion in [Rh(CO)(L-L)I(2)Me] leads to acetyl complexes [Rh(L-L)I(2)(COMe)] for which X-ray crystal structures were obtained for L-L = dppms (3a) and dppe (3b). Against the expectations of simple bonding arguments, methyl migration is faster by a factor of ca. 1500 for [Rh(CO)(dppms)I(2)Me] (2a) than for [Rh(CO)(dppe)I(2)Me] (2b). For M = Ir, alkyl iodide oxidative addition gives stable alkyl complexes [Ir(CO)(L-L)I(2)R]. Migratory insertion (induced at high temperature by CO pressure) was faster for [Ir(CO)(dppms)I(2)Me] (5a) than for its dppe analogue (5b). Reaction of methyl triflate with [Ir(CO)(dppms)I] (4a) yielded the dimer [[Ir(CO)(dppms)(mu-I)Me](2)](2+) (7), which was characterized crystallographically along with 5a and [Ir(CO)(dppms)I(2)Et] (6). Analysis of the X-ray crystal structures showed that the dppms ligand adopts a conformation which creates a sterically crowded pocket around the alkyl ligands of 5a, 6, and 7. It is proposed that this steric strain can be relieved by migratory insertion, to give a five-coordinate acetyl product in which the sterically crowded quadrants flank a vacant coordination site, exemplified by the crystal structure of 3a. Conformational analysis indicates similarity between M(dppms) and M(2)(mu-dppm) chelate structures, which have less flexibility than M(dppe) systems and therefore generate greater steric strain with the "axial" ligands in octahedral complexes. Ab initio calculations suggest an additional electronic contribution to the migratory insertion barrier, whereby a sulfur atom trans to CO stabilizes the transition state compared to systems with phosphorus trans to CO. The results represent a rare example of the quantification of ligand effects on individual steps from catalytic cycles, and are discussed in the context of catalytic methanol carbonylation. Implications for other catalytic reactions utilizing chelating diphosphines (e.g., CO/alkene copolymerization and alkene hydroformylation) are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0176191DOI Listing

Publication Analysis

Top Keywords

migratory insertion
16
chelate ligands
8
methyl iodide
8
oxidative addition
8
x-ray crystal
8
crystal structures
8
sterically crowded
8
steric strain
8
complexes
5
ligands
5

Similar Publications

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Aryl aldehydes are key synthetic intermediates in the manufacturing of active pharmaceutical ingredients. They are generated on scale (>1000 kg) through the palladium-catalyzed formylation of aryl bromides using syngas (CO/H). The best-in-class catalyst system for this reaction employs di-1-adamantyl--butylphosphine (cataium A), palladium(II) acetate, and tetramethylethylenediamine.

View Article and Find Full Text PDF

An innovative complex-valued encoding black-winged kite algorithm for global optimization.

Sci Rep

January 2025

School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an, 237012, China.

The black-winged kite algorithm (BKA) constructed on the black-winged kites' migratory and predatory instincts is a revolutionary swarm intelligence method that integrates the Leader tactic with the Cauchy variation procedure to retrieve the expansive appropriate convergence solution. The essential BKA exhibits marginalized resolution efficiency, inferior assessment precision, and stagnant sensitive anticipation. To foster aggregate discovery intensity and advance widespread computational efficacy, an innovative complex-valued encoding BKA (CBKA) is presented to resolve the global optimization.

View Article and Find Full Text PDF

Three-component diels-alder reaction through palladium carbene migratory insertion enabled dearomative C(sp)-H bond activation.

Nat Commun

December 2024

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.

Owning to the versatile nature in participation of Diels-Alder (D-A) reactions, the development of efficient approaches to generate active ortho-quinodimethanes (o-QDMs) has gained much attention. However, a catalytic method involving coupling of two readily accessible components to construct o-QDMs is lacking. Herein, we describe a palladium carbene migratory insertion enabled dearomative C(sp)-H activation to form active o-QDM species through the cross-coupling of N-tosylhydrazones with aryl halides.

View Article and Find Full Text PDF

Ni(II)-catalyzed nucleophilic substitution for the synthesis of allenylselenide.

Chem Commun (Camb)

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.

A method for synthesizing allenylselenides has been developed using readily available propargyl carbonate and phenylselenol. The reaction is catalyzed by Ni(II) and proceeds a migratory insertion and β-oxygen elimination mechanism. Due to the strong interaction between Se and Ni leading to catalyst deactivation, zinc salt was used to mitigate the deleterious effects of Se anions on the catalyst, thereby facilitating the successful synthesis of the target products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!