A multiple-gradient-echo sequence is proposed for accurately mapping R(2)(*) in the presence of in-slice macroscopic susceptibility gradients. In-slice signal loss caused by background macroscopic susceptibility gradients is mitigated by combining three successive gradient-echo images whose slice refocus gradients are successively incremented. The optimum incrementation of slice-refocusing gradients was determined by numerical simulation. By repeating further cycles of three images in the same sequence, artifact-compensated data spanning a range of echo times (TEs) was acquired leading to single-scan, R(2) (*) maps that are quantitatively reflective of microscopic field inhomogeneities. The performance of the sequence was demonstrated at 3.0T, first with a doped aqueous phantom, and then on the head of a normal volunteer. That performance is compared quantitatively with previously published work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.10291 | DOI Listing |
Nutrients
January 2025
Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.
Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.
Life (Basel)
January 2025
Department of Medical Imaging, China Medical University Hospital, Taichung 40402, Taiwan.
Blood pressure measurement is important in monitoring hypertension. However, blood pressure does not provide much information about renal condition in treated hypertension. This study aimed to evaluate renal oxygenation in hypertensive patients using T2* mapping.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of liver-related morbidity and mortality. Although the invasive liver biopsy remains the golden standard for MASLD diagnosis, Magnetic Resonance Imaging-derived Proton Density Fat Fraction (MRI-PDFF) is an accurate, non-invasive method for the assessment of treatment response. This study aimed at developing a Polygenic Risk Score (PRS) to improve MRI-PDFF prediction using UK Biobank data to assess an individual's genetic liability to MASLD.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.
Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.
Brain Commun
January 2025
Department of Neurology, Inselspital, University Hospital Bern, University of Bern, 3010 Bern, Switzerland.
Personalized prediction of stroke outcome using lesion imaging markers is still too imprecise to make a breakthrough in clinical practice. We performed a combined prediction and brain mapping study on topographic and connectomic lesion imaging data to evaluate (i) the relationship between lesion-deficit associations and their predictive value and (ii) the influence of time since stroke. In patients with first-ever ischaemic stroke, we first applied high-dimensional machine learning models on lesion topographies or structural disconnection data to model stroke severity (National Institutes of Health Stroke Scale 24 h/3 months) and functional outcome (modified Rankin Scale 3 months) in cross-validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!