Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Various computational approaches have been applied to predict aspects of animal behavior from the recorded activity of populations of neurons. Here we invert this process to predict the requisite neuromuscular activity associated with specified motor behaviors. A probabilistic method based on Bayes' theorem was used to predict the patterns of muscular activity needed to produce various types of desired finger movements. The profiles of predicted activity were then used to drive frequency-modulated muscle stimulators to evoke multijoint finger movements. Comparison of movements generated by electrical stimulation with desired movements yielded root mean squared errors between approximately 18 and 26%. This reasonable correspondence between desired and evoked movements suggests that this approach might serve as a useful strategy to control neuroprosthetic systems that aim to restore movement to paralyzed individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6758032 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.22-21-09465.2002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!