Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F(2alpha) synthase homologue, we have identified a novel "old yellow enzyme" from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH(2) to PGF(2alpha) as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and beta-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194105PMC
http://dx.doi.org/10.1084/jem.20020885DOI Listing

Publication Analysis

Top Keywords

trypanosoma cruzi
8
anti-chagasic drugs
8
drugs
7
key role
4
role yellow
4
yellow enzyme
4
enzyme metabolism
4
metabolism drugs
4
drugs trypanosoma
4
cruzi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!