Absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein, is responsible for the Fragile X syndrome, the most common form of inherited mental retardation. FMRP is a cytoplasmic protein associated with mRNP complexes containing poly(A)+mRNA. As a step towards understanding FMRP function(s), we have established the immortal STEK Fmr1 KO cell line and showed by transfection assays with FMR1-expressing vectors that newly synthesized FMRP accumulates into cytoplasmic granules. These structures contain mRNAs and several other RNA-binding proteins. The formation of these cytoplasmic granules is dependent on determinants located in the RGG domain. We also provide evidence that FMRP acts as a translation repressor following co-transfection with reporter genes. The FMRP-containing mRNPs are dynamic structures that oscillate between polyribosomes and cytoplasmic granules reminiscent of the Stress Granules that contain repressed mRNAs. We speculate that, in neurons, FMRP plays a role as a mRNA repressor in incompetent mRNP granules that have to be translocated from the cell body to distal locations such as dendritic spines and synaptosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/11.24.3007DOI Listing

Publication Analysis

Top Keywords

cytoplasmic granules
16
mental retardation
12
fragile mental
8
retardation protein
8
granules
6
fmrp
6
cytoplasmic
5
trapping messenger
4
messenger rna
4
rna fragile
4

Similar Publications

Exposure to environmentally relevant levels of DEHP during development modifies the distribution and expression patterns of androgen receptors in the anterior pituitary in a sex-specific manner.

Chemosphere

January 2025

Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:

DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.

View Article and Find Full Text PDF

Modelling Peroxisomal Disorders in Zebrafish.

Cells

January 2025

Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK.

Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication.

View Article and Find Full Text PDF

Multi-modal investigation reveals pathogenic features of diverse DDX3X missense mutations.

PLoS Genet

January 2025

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America.

De novo mutations in the RNA binding protein DDX3X cause neurodevelopmental disorders including DDX3X syndrome and autism spectrum disorder. Amongst ~200 mutations identified to date, half are missense. While DDX3X loss of function is known to impair neural cell fate, how the landscape of missense mutations impacts neurodevelopment is almost entirely unknown.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!