Degradation of environmental pollutants by Trametes trogii.

Rev Argent Microbiol

Laboratorio de Microbiología, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina.

Published: December 2002

The ability of the ligninolytic fungus Trametes trogii to degrade in vitro different xenobiotics (PCBs, PAHs and dyes) was evaluated. Either 200 ppm of a PCB mixture (Aroclor 1150) or 160 ppm of an industrial PAH mixture (10% V/V of PAHs, principal components hexaethylbenzene, naphthalene, 1-methyl naphthalene, acenaphthylene, anthracene, fluorene and phenanthrene), were added to trophophasic and idiophasic cultures growing in a nitrogen limited mineral medium (glucose/asparagine) and in a complex medium (malt extract/glucose). Gas-liquid chromatography proved that within 7 to 12 d more than 90% of the organopollutants added were removed. The decrease in absorbance at 620 nm demonstrated that cultures of this fungus were able to transform 80% of the dye Anthraquinone-blue (added at a concentration of 50 ppm) in 1.5 h. Enzyme estimations indicated high activity of laccase (up to 0.55 U/mL), as well as lower production of manganese-peroxidase. Laccase activity, detected in all the conditions assayed, could be implicated in the degradation of these organopollutants. Considering the results obtained, T. trogii seems promising for detoxification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

trametes trogii
8
degradation environmental
4
environmental pollutants
4
pollutants trametes
4
trogii ability
4
ability ligninolytic
4
ligninolytic fungus
4
fungus trametes
4
trogii degrade
4
degrade vitro
4

Similar Publications

Fabrication, characterization, and application of laccase-immobilized membranes for acetamiprid and diuron degradation.

Int J Biol Macromol

December 2024

Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye.

Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared.

View Article and Find Full Text PDF

Transcription factors (TFs) play a crucial role in gene expression, and studying them can lay the foundation for future research on the functional characterization of TFs involved in various biological processes. In this study, we conducted a genome-wide identification and analysis of TFs in the thermotolerant basidiomycete fungus, Coriolopsis trogii. The TF repertoire of C.

View Article and Find Full Text PDF

The present study focuses on the application of fungal-based microbial fuel cells (FMFC) for the degradation of organic pollutants including Acetaminophen (APAP), Para-aminophenol (PAP), Sulfanilamide (SFA), and finally Methylene Blue (MB). The objective is to investigate the patterns of degradation (both individually and as a mixture solution) of the four compounds in response to fungal metabolic processes, with an emphasis on evaluating the possibility of generating energy. Linear Sweep Voltammetry (LSV) has been used for electrochemical analysis of the targeted compounds on a Glassy Carbon Electrode (GCE).

View Article and Find Full Text PDF

Laccase is a multitasking protein for synthetic gene circuits in the yeast .

Synth Syst Biotechnol

December 2024

School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China.

Laccase is a multicopper oxidase enzyme that oxidizes a variety of substrates, including polyphenols and polycyclic aromatic hydrocarbons (PAHs). It catalyzes the four-electron reduction of molecular oxygen that results in the production of water as a by-product. Thus, laccase can play an important role in environmental care.

View Article and Find Full Text PDF

This study presents an innovative approach for the reuse and recycling of waste material, brewer's spent grain (BSG) for creating a novel green biocatalyst. The same BSG was utilized in several consecutive steps: initially, it served as a substrate for the cultivation and production of laccase by a novel isolated fungal strain, Coriolopsis trogii 2SMKN, then, it was reused as a carrier for laccase immobilization, aiding in the process of azo dye decolorization and finally, reused as recycled BSG for the second successful laccase immobilization for six guaiacol oxidation, contributing to a zero-waste strategy. The novel fungal strain produced laccase with a maximum activity of 171.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!