Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the fission yeast Schizosaccharomyces pombe, the protein kinase Chk1 has an essential role in transducing a delay signal to the cell cycle machinery in the presence of DNA damage. Fission yeast cells lacking the chk1 gene do not delay progression of the cell cycle in response to damage and are thus sensitive to DNA damaging agents. We have previously shown that Chk1 is phosphorylated following DNA damage induced by a variety of agents and that this is dependent on the integrity of the DNA damage checkpoint pathway, including Rad3, the ATR homolog. Through a combination of mutagenesis and phospho-specific antibodies, we have shown that serine at position 345 (S345) is phosphorylated in vivo in response to DNA damage, and that S345 phosphorylation is required for an intact checkpoint response. We have developed a kinase assay for Chk1, and have shown that basal Chk1 kinase activity is increased in response to DNA damage and that this increase, but not the basal activity, is dependent on S345. Furthermore, we show that S345 phosphorylation is required for Chk1 to associate with Rad24, a 14-3-3 protein, upon DNA damage. These results are consistent with a model whereby Chk1 phosphorylation results in increased Chk1 kinase activity that is necessary for both checkpoint delay and cellular survival following damage to the genome. These data are similar to observations made in mammalian cells and Xenopus oocyte extracts, suggesting that mechanisms leading to Chk1 activation have been conserved in evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.00133 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!