The SNARE membrane fusion machinery controls the fusion of transport vesicles with the apical and basolateral plasma-membrane domains of epithelial cells and is implicated in the specificity of polarized trafficking. To test the hypothesis that differential expression and localization of SNAREs may be a mechanism that contributes to cell-type-specific polarity of different proteins, we studied the expression and distribution of plasma-membrane SNAREs in the retinal pigment epithelium (RPE), an epithelium in which the targeting and steady-state polarity of several plasma membrane proteins differs from most other epithelia. We show here that retinal pigment epithelial cells both in vitro and in vivo differ significantly from MDCK cells and other epithelial cells in their complement of expressed t-SNAREs that are known - or suggested - to be involved in plasma membrane trafficking. Retinal pigment epithelial cells lack expression of the normally apical-specific syntaxin 3. Instead, they express syntaxins 1A and 1B, which are normally restricted to neurons and neuroendocrine cells, on their apical plasma membrane. The polarity of syntaxin 2 is reversed in retinal pigment epithelial cells, and it localizes to a narrow band on the lateral plasma membrane adjacent to the tight junctions. In addition, syntaxin 4 and the v-SNARE endobrevin/VAMP-8 localize to this sub-tight junctional domain, which suggests that this is a region of preferred vesicle exocytosis. Altogether, these data suggest that the unique polarity of many retinal pigment epithelial proteins results from differential expression and distribution of SNAREs at the plasma membrane. We propose that regulation of the expression and subcellular localization of plasma membrane SNAREs may be a general mechanism that contributes to the establishment of distinct sorting phenotypes among epithelial cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.00116DOI Listing

Publication Analysis

Top Keywords

plasma membrane
28
retinal pigment
24
epithelial cells
24
pigment epithelial
20
epithelial
8
cells
8
expression localization
8
localization plasma
8
membrane
8
differential expression
8

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Unlabelled: RamA is an intrinsic regulator in , belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of resulted in a fivefold decrease in the transcriptional levels of the operon.

View Article and Find Full Text PDF

Synthesis and Anticancer Studies of Pt(II) Complex Derived from 4-Phenylthiosemicarbazone.

Chem Biodivers

January 2025

Guangxi Science and Technology Normal University, School of food biochemical engineering, Tiebei road 966, 546199, Laibin, CHINA.

Although cisplatin is widely used as a first-line chemotherapy agent, it has significant side effects. Herein, we synthesized a Pt(II) complex (Pt1) derived from o-vanillin-4-phenylthiosemicarbazone ligand, and confirmed its crystal structure by X-ray crystallography. Complex Pt1 exhibited potent anticancer activity against various tested cancer cell lines, with particular efficacy against HepG-2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!