Design and synthesis of novel imidazole derivatives as potent inhibitors of allene oxide synthase(CYP74).

Bioorg Med Chem

Department of Biotechnology, Akita Prefectural University, Shimoshinjo-Nakano, Akita-shi, Akita, Japan.

Published: December 2002

AI Article Synopsis

  • AOS is a crucial enzyme in the oxylipin pathway for converting hydroperoxylinolenic acid to allene oxide, which is involved in plant defense mechanisms.
  • Researchers have synthesized new imidazole derivatives and tested them as inhibitors of AOS, using a recombinant enzyme from Arabidopsis.
  • The most effective inhibitor identified was heptyl 8-[1-(2,4-dichlorophenyl)-2-imidazolylethoxy]octanoate, which was significantly more potent than existing AOS inhibitors.

Article Abstract

Allene oxide synthase (AOS) is a key enzyme in the oxylipin pathway in plants leading to jasmonic acid and other jasmonates (JAs), important signal mediators of defense signal networks in plants. AOS uses hydroperoxylinolenic acid as an oxygen donor as well as the substrate, thus the biochemical conversion of 13(S)-hydroperoxylinolenic acid to allene oxide can proceed in the absence of oxygen and NADPH. We have designed the synthesized of a series of novel imidazole derivatives and tested them in a bioassay as AOS inhibitors using a purified recombinant AOS enzyme isolated from Arabidopsis and expressed in E. coli. Among the derivatives prepared, heptyl 8-[1-(2,4-dichlorophenyl)-2-imidazolylethoxy]octanoate (k) was found to be the most potent inhibitor, with an IC(50) of 10+/-5 nM, which is 250,000-fold and 1,000,000-fold more potent than the known AOS inhibitors, acetylsalicyclic acid (2.5 mM) and ketoconazole (10 mM), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0968-0896(02)00422-4DOI Listing

Publication Analysis

Top Keywords

allene oxide
12
novel imidazole
8
imidazole derivatives
8
aos inhibitors
8
aos
5
design synthesis
4
synthesis novel
4
derivatives potent
4
potent inhibitors
4
inhibitors allene
4

Similar Publications

A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86% yield, >98:2 chemo- and regioselectivity, >98:2 dr and >99.5:0.

View Article and Find Full Text PDF

The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation.

View Article and Find Full Text PDF

Ferrocenyl amines as directing groups for C-H activation have limitations as they are prone to undergo oxidation, allylic deamination, and β-hydride elimination. The fundamental challenge observed here is the competition between the desired C-H activation the vulnerable β-C-H bond activation of amines and fine-tuning of a suitable oxidant which avoids the oxidation of the β-C-H bond and ferrocene. Herein, the potential of an axially chiral NOBINAc ligand is revealed to implement the enantioselective Pd-catalyzed C-H activation process of ferrocenyl amines.

View Article and Find Full Text PDF

Base promoted regio- and stereoselective hydrophosphinylation of allenes.

Org Biomol Chem

December 2024

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China.

A novel and transition-metal-free hydrophosphinylation of allenes with secondary phosphine oxides was developed. In the presence of the cheap and commercially available cesium carbonate, various hydrophosphinylation products were synthesized with exclusive regio- and stereoselectivity under mild conditions. This methodology provides simple and efficient access to ()-alkenylphosphine oxides in moderate to excellent yields with a relatively broad substrate scope.

View Article and Find Full Text PDF

Plant viruses rely on host factors for successful infection. Non-specific lipid transfer proteins (nsLTPs) play critical roles in plant-pathogen interactions; however, their functions and underlying molecular mechanisms in viral infections remain largely unknown. Jasmonic acid (JA) is a crucial regulatory hormone in the process of plant resistance to viral infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!