According to current models of peroxisomal biogenesis, Pex5p cycles between the cytosol and the peroxisome transporting newly synthesized proteins to the organelle matrix. However, little is known regarding the mechanism of this pathway. Here, we show that Pex5p enters and exits the peroxisomal compartment in a process that requires ATP. Insertion of Pex5p into the peroxisomal membrane is blocked by anti-Pex14p IgGs. At the peroxisomal level, two Pex14p-associated populations of Pex5p could be resolved, stage 2 and stage 3 Pex5p, both exposing the majority of their masses into the organelle lumen. Stage 3 Pex5p can be easily detected only under ATP-limiting conditions; in the presence of ATP it leaves the peroxisomal compartment rapidly. Our data suggest that translocation of PTS1-containing proteins across the peroxisomal membrane occurs concomitantly with formation of the Pex5p-Pex14p membrane complex and that this is probably the site from which Pex5p leaves the peroxisomal compartment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M209498200 | DOI Listing |
Nat Metab
December 2024
Department of Biomedicine, University of Bergen, Bergen, Norway.
The coenzyme NAD is consumed by signalling enzymes, including poly-ADP-ribosyltransferases (PARPs) and sirtuins. Ageing is associated with a decrease in cellular NAD levels, but how cells cope with persistently decreased NAD concentrations is unclear. Here, we show that subcellular NAD pools are interconnected, with mitochondria acting as a rheostat to maintain NAD levels upon excessive consumption.
View Article and Find Full Text PDFEMBO Rep
December 2024
Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
Salmonella enterica serotype Typhimurium (Salmonella) resides and multiplies intracellularly in cholesterol-rich compartments called Salmonella-containing vacuoles (SCVs) with actin-rich tubular extensions known as Salmonella-induced filaments (SIFs). SCV maturation depends on host-derived cholesterol, but the transport mechanism of low-density lipoprotein (LDL)-derived cholesterol to SCVs remains unclear. Here we find that peroxisomes are recruited to SCVs and function as pro-bacterial organelle.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany.
The aryl hydrocarbon receptor (AhR) and the peroxisome proliferator-activated receptor γ (PPARγ) are ligand-activated transcription factors that have in recent years been investigated for their anti-inflammatory properties for treatment of inflammatory bowel diseases (IBDs). These are globally prevalent chronic maladies of the gut that lack cost-efficient therapeutical options capable of inducing long-term remission. In the present study, we used an in vitro Transwell co-culture model composed of Caco-2 epithelial cells in the apical compartment and lipopolysaccharide-treated (LPS) THP-1 macrophages in the basolateral compartment.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam, The Netherlands.
Plant Physiol
November 2024
BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA.
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!