Case Report: A 35 year-old female with a pigmented choroidal tumor in the inferotemporal quadrant, of 3.31 x 7.64 x 5.46 mm. The patient received an intravenous injection of 25 mg of indocyanine green previous to photocoagulation of the lesion with an 810 nm diode laser. After one year follow-up the tumor showed involution demonstrated by clinical and ultrasonographic evaluation.

Discussion: Indocyanine green allows maximal absortion of light energy delivered by diode laser, enhancing its action by making the deepest tissues vulnerable to photocoagulation and reducing time of exposure and number of sessions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

diode laser
12
indocyanine green
12
810 diode
8
[choroidal melanoma
4
melanoma treated
4
treated 810
4
laser indocyanine
4
green case
4
case report]
4
report] case
4

Similar Publications

Purpose: To evaluate an alternative surgical approach for Port Delivery System with ranibizumab (PDS) implant and a novel application of Iridex laser system in Gottingen minipig model.

Methods: A total of seventeen male minipigs (Part 1: 9 animals in non-recovery and Part 2: 8 animals observed for 8-days post-surgery Part 2) received PDS implant insertion into each eye. The effect of Iridex 810 nm infrared diode laser with varying energy (power or duration) on transscleral pars plana ablation, surrounding ocular tissue and postsurgical vitreous hemorrhage (VH) was investigated.

View Article and Find Full Text PDF

Introduction: Low-grade tumors account for approximately 50% of non-muscle invasive bladder cancer (NMIBC) with recurrence rates between 46% and 62%. Management of NMIBC recurrence typically involves transurethral resection of bladder tumor (TURBT) under general or regional anesthesia, which carries perioperative risks and considerable healthcare costs due to repeated procedures. Therefore, less invasive treatments such as office-based laser ablation, which aim to manage recurrences and reduce inpatient procedures without compromising oncological control, are needed.

View Article and Find Full Text PDF

Introduction And Objectives: Laser vaporization techniques have emerged as a prominent alternative to transurethral prostate resection in managing benign prostatic obstruction (BPO). This study focuses on assessing the effectiveness of the ejaculatory preserving laser vaporization of the prostate technique compared to the conventional non-ejaculatory approach in managing BPO.

Patients And Methods: Our study was performed between August 2022 and September 2023.

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

Experimental demonstration of 8190-km long-haul semiconductor-laser chaos synchronization induced by digital optical communication signal.

Light Sci Appl

January 2025

Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 510006, China.

Common-signal-induced synchronization of semiconductor lasers have promising applications in physical-layer secure transmission with high speed and compatibility with the current fiber communication. Here, we propose an ultra-long-distance laser synchronization scheme by utilizing random digital optical communication signal as the common drive signal. By utilizing the long-haul optical coherent communication techniques, high-fidelity fiber transmission of the digital drive can be achieved and thus ultra-long-distance synchronization is expected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!