Bilateral periventricular nodular heterotopia (BPNH) is a neuronal migration disorder that is characterized by subependymal nodules of gray matter. Recently, a causative gene for BPNH, filamin 1, has been identified, and possible roles of the translated protein in cell migration and blood vessel development have been proposed. We report here the histopathological features of an autopsy case of BPNH with widespread glomeruloid microvascular anomaly and dysplastic cytoarchitecture in the cerebral cortex, in whom we found a novel exon 11 (Val528Met) filamin 1 mutation. Within the periventricular nodules, well-differentiated pyramidal neurons were randomly oriented. A small proportion of neurons were immunolabeled with antibodies raised against calbindin D-28k, parvalbumin, or calretinin. We used a carbocyanine dye (DiI) tracing technique to investigate the extent of fiber projections within and outside the nodules. The labeled fibers formed bundles that extended into the surrounding white matter. Connections between adjacent nodules were evident. Connections between the nodules and the cerebral cortex were also seen, with a small number of labeled fibers reaching the cortex. In the cerebral cortex, small closely packed vessels ran in a parallel fashion throughout all of the layers. Immunohistochemically, the inner rim of individual vessel lumina was labeled by an antibody against factor VIII, and the vessel walls were labeled by antibodies against actin and laminin. Astrocyte processes, labeled with an antibody to glial fibrillary acidic protein, invaded these vascular channels. Ultrastructurally, a network of basal lamina-like materials lined with endothelial cells was evident. The cytoarchitecture of the cerebral cortex was disturbed, in that the columnar neuronal arrangement was distorted around the malformed vessels. This case appears to represent an example of BPNH manifesting widespread developmental anomalies within the blood vessels and the cortical cytoarchitecture in the cerebrum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00401-002-0594-9DOI Listing

Publication Analysis

Top Keywords

cerebral cortex
20
cytoarchitecture cerebral
12
bilateral periventricular
8
periventricular nodular
8
nodular heterotopia
8
widespread glomeruloid
8
glomeruloid microvascular
8
microvascular anomaly
8
anomaly dysplastic
8
dysplastic cytoarchitecture
8

Similar Publications

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.

View Article and Find Full Text PDF

Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.

Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!