Nucleic Acids Res
GMIFC-CNRS-UPR1983, Institut André Lwoff, 7 Rue Guy Môquet, 94801 Villejuif, France.
Published: November 2002
The human and murine MOK2 proteins are factors able to recognize both DNA and RNA through their zinc finger motifs. This dual affinity of MOK2 suggests that MOK2 might be involved in transcription and post-transcriptional regulation of MOK2 target genes. The IRBP gene contains two MOK2-binding elements, a complete 18 bp MOK2-binding site located in intron 2 and the essential core MOK2-binding site (8 bp of conserved 3'-half-site) located in the IRBP promoter. We have demonstrated that MOK2 can bind to the 8 bp present in the IRBP promoter and repress transcription from this promoter by competing with the CRX activator for DNA binding. In this study, we identify a novel interaction between lamin A/C and hsMOK2 by using the yeast two-hybrid system. The interaction, which was confirmed by GST pull-down assays and co-immunolocalization studies in vivo, requires the N-terminal acidic domain of hsMOK2 and the coiled 2 domain of lamin A/C. Furthermore, we show that a fraction of hsMOK2 protein is associated with the nuclear matrix. We therefore suggest that hsMOK2 interactions with lamin A/C and the nuclear matrix may be important for its ability to repress transcription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135794 | PMC |
http://dx.doi.org/10.1093/nar/gkf587 | DOI Listing |
Soft Matter
January 2025
Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
Physical models of cell motility rely mostly on cytoskeletal dynamical assembly. However, when cells move through the complex 3D environment of living tissues, they have to squeeze their nucleus that is stiffer than the rest of the cell. The lamin network, organised as a shell right underneath the nuclear membrane, contributes to the nuclear integrity and stiffness.
View Article and Find Full Text PDFNucleus
December 2025
Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
Over the past 25 years, nuclear envelope (NE) perturbations have been reported in various experimental models with mutations in the gene. Although the hypothesis that NE perturbations from mutations are a fundamental feature of striated muscle damage has garnered wide acceptance, the molecular sequalae provoked by the NE damage and how they underlie disease pathogenesis such as cardiomyopathy ( cardiomyopathy) remain poorly understood. We recently shed light on one such consequence, by employing a cardiomyocyte-specific deletion in the adult heart.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
School of Medicine, Nankai University, Tianjin, China.
Bladder cancer (BC) is a prevalent urinary malignancy and muscle-invasive bladder cancer (MIBC) is particularly aggressive and associated with poor prognosis. One of MIBC features is the nuclear atypia. However, the molecular mechanism underlying MIBC remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Bone Pathophysiology Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.