Three classes of neurons form synapses in the antennal lobe of Drosophila, the insect counterpart of the vertebrate olfactory bulb: olfactory receptor neurons, projection neurons, and inhibitory local interneurons. We have targeted a genetically encoded optical reporter of synaptic transmission to each of these classes of neurons and visualized population responses to natural odors. The activation of an odor-specific ensemble of olfactory receptor neurons leads to the activation of a symmetric ensemble of projection neurons across the glomerular synaptic relay. Virtually all excited glomeruli receive inhibitory input from local interneurons. The extent, odor specificity, and partly interglomerular origin of this input suggest that inhibitory circuits assemble combinatorially during odor presentations. These circuits may serve as dynamic templates that extract higher order features from afferent activity patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0896-6273(02)00975-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!