The central domain is required to target and anchor perilipin A to lipid droplets.

J Biol Chem

Department of Nutritional Sciences, Rutgers, State University of New Jersey, New Brunswick, New Jersey 08901, USA.

Published: January 2003

The perilipins are the most abundant proteins coating the surfaces of lipid droplets in adipocytes and are found at lower levels surrounding lipid droplets in steroidogenic cells. Perilipins drive triacylglycerol storage in adipocytes by regulating the rate of basal lipolysis and are also required to maximize hormonally stimulated lipolysis. To map the domains that target and anchor perilipin A to lipid droplets, we stably expressed fragments of perilipin A in 3T3-L1 fibroblasts. Immunofluorescence microscopy and immunoblotting of proteins from isolated lipid droplets revealed that neither the amino nor the carboxyl terminus is required to target perilipin A to lipid droplets; however, there are multiple, partially redundant targeting signals within a central domain including 25% of the primary amino acid sequence. A peptide composed of the central domain of perilipin A directed a fused green fluorescent protein to the surfaces of lipid droplets. Full-length perilipin A associates with lipid droplets via hydrophobic interactions, as shown by the persistence of perilipins on lipid droplets after centrifugation through an alkaline carbonate solution. Results of the mutagenesis studies indicate that the sequences responsible for anchoring perilipin A to lipid droplets are most likely domains of moderately hydrophobic amino acids located within the central 25% of the protein. Thus, we conclude that the central 25% of the perilipin A sequence contains all of the amino acids necessary to target and anchor the protein to lipid droplets.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M206602200DOI Listing

Publication Analysis

Top Keywords

lipid droplets
44
perilipin lipid
16
central domain
12
target anchor
12
lipid
11
droplets
11
required target
8
perilipin
8
anchor perilipin
8
surfaces lipid
8

Similar Publications

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

The proteomic response of to amphotericin B (AmB) reveals the involvement of the RTA-like protein RtaA in AmB resistance.

Microlife

December 2024

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Adolf-Reichwein-Str. 23, 07745 Jena, Germany.

The polyene antimycotic amphotericin B (AmB) and its liposomal formulation AmBisome belong to the treatment options of invasive aspergillosis caused by . Increasing resistance to AmB in clinical isolates of species is a growing concern, but mechanisms of AmB resistance remain unclear. In this study, we conducted a proteomic analysis of exposed to sublethal concentrations of AmB and AmBisome.

View Article and Find Full Text PDF

[Comparison of the effects of tenofovir amibufenamide and tenofovir alafenamide on lipid metabolism in the body].

Zhonghua Gan Zang Bing Za Zhi

December 2024

Department of Infectious Diseases and Hepatology, Yichun People's Hospital, Yichun336000, China.

To compare the effectiveness and safety profile of tenofovir amibufenamide (TMF) and tenofovir alafenamide (TAF), especially the effects on lipid metabolism in the treatment of chronic hepatitis B. A retrospective study was conducted on the virological response rate, biochemical response rate, renal function indicators, and lipid metabolism status of 159 cases with chronic hepatitis B (72 cases with TMF and 87 cases with TAF) after 48 weeks of antiviral treatment. The effects of the two drugs on lipid metabolism were further explored through cell and animal experiments.

View Article and Find Full Text PDF

In this study, oil-in-water (O/W) high internal phase emulsions (HIPEs) with enhanced antioxidative properties stabilized by octenyl succinic anhydride modified starch (OSAS)/(-)-Epigallocatechin-3-gallate (EGCG) mixtures were prepared. The influence of EGCG concentration (0-0.2 %, w/v), NaCl concentration (0-400 mmol/L), and temperature (25-90 °C) on the stability of the HIPEs was evaluated.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!