Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols.

Appl Environ Microbiol

Department of Biochemistry. Electrospray Mass Spectrometry Unit, Central Analytical Facility, University of Stellenbosch, Matieland 7602, Republic of South Africa.

Published: November 2002

A major concern in the use of class IIa bacteriocins as food preservatives is the well-documented resistance development in target Listeria strains. We studied the relationship between leucocin A, a class IIa bacteriocin, and the composition of the major phospholipid, phosphatidylglycerol (PG), in membranes of both sensitive and resistant L. monocytogenes strains. Two wild-type strains, L. monocytogenes B73 and 412, two spontaneous mutants of L. monocytogenes B73 with intermediate resistance to leucocin A (+/-2.4 and +/-4 times the 50% inhibitory concentrations [IC50] for sensitive strains), and two highly resistant mutants of each of the wild-type strains (>500 times the IC50 for sensitive strains) were analyzed. Electrospray mass spectrometry analysis showed an increase in the ratios of unsaturated to saturated and short- to long-acyl-chain species of PG in all the resistant L. monocytogenes strains in our study, although their sensitivities to leucocin A were significantly different. This alteration in membrane phospholipids toward PGs containing shorter, unsaturated acyl chains suggests that resistant strains have cells with a more fluid membrane. The presence of this phenomenon in a strain (L. monocytogenes 412P) which is resistant to both leucocin A and pediocin PA-1 may indicate a link between membrane composition and class IIa bacteriocin resistance in some L. monocytogenes strains. Treatment of strains with sterculic acid methyl ester (SME), a desaturase inhibitor, resulted in significant changes in the leucocin A sensitivity of the intermediate-resistance strains but no changes in the sensitivity of highly resistant strains. There was, however, a decrease in the amount of unsaturated and short-acyl-chain PGs after treatment with SME in one of the intermediate and both of the highly resistant strains, but the opposite effect was observed for the sensitive strains. It appears, therefore, that membrane adaptation may be part of a resistance mechanism but that several resistance mechanisms may contribute to a resistance phenotype and that levels of resistance vary according to the type of mechanisms present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129904PMC
http://dx.doi.org/10.1128/AEM.68.11.5223-5230.2002DOI Listing

Publication Analysis

Top Keywords

class iia
16
strains
14
monocytogenes strains
12
sensitive strains
12
highly resistant
12
resistant strains
12
iia bacteriocin
8
resistant monocytogenes
8
wild-type strains
8
monocytogenes b73
8

Similar Publications

Cardiac allograft vasculopathy (CAV) is a major prognosis-limiting factor in patients undergoing orthotopic heart transplantation (HT). Due to the diffuse involvement of the coronary tree, CAV lesions are often not amenable to percutaneous coronary intervention (PCI), leaving coronary artery bypass grafting (CABG) and retransplantation as primary revascularization options. : The latest guidelines from the International Society for Heart and Lung Transplantation (ISHLT) recognize CABG as a viable option but with a downgraded strength of recommendation.

View Article and Find Full Text PDF

Performance Improvement with Reduced Number of Channels in Motor Imagery BCI System.

Sensors (Basel)

December 2024

Department of Electronics and Communication Engineering, Istanbul Technical University, 34467 Istanbul, Istanbul, Turkey.

Classifying Motor Imaging (MI) Electroencephalogram (EEG) signals is of vital importance for Brain-Computer Interface (BCI) systems, but challenges remain. A key challenge is to reduce the number of channels to improve flexibility, portability, and computational efficiency, especially in multi-class scenarios where more channels are needed for accurate classification. This study demonstrates that combining Electrooculogram (EOG) channels with a reduced set of EEG channels is more effective than relying on a large number of EEG channels alone.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!